Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Sonnensystem : Artikel [ Druckansicht ]

 
RADARSATELLITEN
Die Einschlagkrater der Erde im Visier
Redaktion / Pressemitteilung des Deutschen Zentrums für Luft- und Raumfahrt
astronews.com
12. Juni 2015

Die beiden deutschen Radarsatelliten TerraSAR-X und TanDEM-X umkreisen seit 2010 im Formationsflug die Erde. Aus ihren Daten wurde inzwischen ein detailliertes 3D-Höhenmodell der Erdoberfläche erstellt. Darauf lassen sich auch Einschlagkrater gut erkennen und untersuchen. In Zukunft hoffen die Forscher auch, mithilfe der Daten noch unbekannte Zeugen früherer Einschläge aufzuspüren.

Rieskrater

Der Rieskrater im Übergang von der Schwäbischen zur Fränkischen Alb entstand, als vor 14,8 Millionen Jahren hier ein Asteroid mit einem Durchmesser von einem Kilometer einschlug. Was heute von dem einstigen Krater übrig ist, lässt sich am deutlichsten im digitalen Höhenmodell der beiden Radarsatelliten TerraSAR-X und TanDEM-X erkennen. Bild: DLR  [Großansicht]

Gerade einmal 188 Meteoritenkrater kennt man weltweit - manche mit einem Durchmesser von nur zehn Metern, andere sind mit einem Durchmesser von 160 Kilometern deutlich mächtiger. Allen gemeinsam ist die Entstehungsgeschichte: Mindestens elf Kilometer pro Sekunde schnell, also mit mehr als 39.000 Kilometern in der Stunde, muss ein Körper aus dem All auf der Erde auftreffen, um einen Einschlagskrater zu hinterlassen.

"Und sie alle können sehr unterschiedlich aussehen, sind oftmals verwittert oder auch mit Seen gefüllt", weiß Manfred Gottwald, Wissenschaftler am Deutschen Zentrum für Luft- und Raumfahrt (DLR). Er hat sie fast alle gesehen - nicht persönlich, sondern mit den Augen der beiden deutschen Radarsatelliten TerraSAR-X und TanDEM-X. Aus deren Daten erstellt das DLR ein dreidimensionales Höhenmodell in einer bisher noch nicht erreichten Genauigkeit.

Zu den so sichtbar gewordenen Überresten einstiger Einschläge gehören die Aorounga-Struktur im Tschad genauso dazu wie der Tin Bider-Krater in Algerien, der Shunak-Impakt in Kasachstan oder auch der Rieskrater in Deutschland. "Zunächst einmal wollen wir lernen, wie die bereits bekannten Meteoritenkrater im 3D-Höhenmodell unserer Radarsatelliten aussehen", erläutert Manfred Gottwald vom DLR-Institut für Methodik der Fernerkundung. Der Blick aus rund 500 Kilometern Höhe erreicht dabei auch die entlegensten Krater.

Die Radarsatelliten TerraSAR-X und TanDEM-X, die seit 2010 im Formationsflug um die Erde kreisen, haben dabei auch den Vorteil, dass sie - im Gegensatz zu optischen Satelliten - unabhängig von Bewölkung oder Beleuchtung die Erdoberfläche aufzeichnen können. Erstmals können die Krater so weltweit in einem einheitlichen, globalen Höhenmodell aufgespürt und verglichen werden.

Anzeige

Um die verschiedenen Einschlagskrater besonders plastisch zu zeigen, werden bei der Auswertung der Daten eine künstliche Beleuchtung hinzugefügt, bei der die Wissenschaftler Sonnenhöhe und -winkel festlegen. Schattenwurf und Höhenmodell in Kombination lassen dann die Kraterränder, Verwerfungen und Erosionsphänomene erst richtig deutlich werden.

Die Aufnahmen für das neue Bild der Erde in 3D sind mittlerweile abgeschlossen, so dass die beiden Radarsatelliten zurzeit für die verschiedensten wissenschaftlichen Untersuchungen eingesetzt werden. Diese Projektphase dauert noch bis Ende dieses Jahres und ist vornehmlich für Forschung in den Bereichen Geologie, Hydrologie, Glaziologie, aber auch Agrarwissenschaft, Wald- und Forstwirtschaft und urbane Landnutzung sowie für die Erprobung neuer Radartechniken vorgesehen.

Für das dreidimensionale Höhenmodell mit einer vertikalen Genauigkeit von bis zu zwei Metern verarbeiteten die Wissenschaftler des DLR bisher mehr als 450.000 Einzelszenen. 65 Prozent der Landmasse der Erde sind bereits in 3D berechnet. "Unser Höhenmodell liefert viele Informationen zu den Einschlagskratern, beispielsweise zur exakten Größe oder auch zum Erhaltungsgrad. Auch lassen sich Krater, die im Sichtbaren durch Vegetation maskiert sind, in ihrer gesamten Dimension kartieren."

Der Prototyp des kosmischen Einschlagskraters befindet sich im amerikanischen Bundesstaat Arizona: Der Barringer-Krater liegt gut erkennbar in der flachen Halbwüste, hat einen Durchmesser von 1,2 Kilometern und zählt zu den am besten erforschten Hinterlassenschaften eines kosmischen Objekts. Dieses etwa 50 Meter große Projektil schlug vor 49.000 Jahren mit einer Geschwindigkeit von zwölf bis 20 Kilometern pro Sekunde auf der Erde auf.

Ähnlich zeigt sich die kasachische Shunak-Struktur aus dem All, deren rund 400 Meter hoher Kraterrand sich im TanDEM-X-Höhenmodell selbst inmitten einer hügeligen Umgebung perfekt abhebt. Vor etwa 45 Millionen Jahren, so schätzen die Wissenschaftler, entstand der Shunak-Krater mit einem Durchmesser von 2,8 Kilometern.

Allerdings tun nicht alle Krater den Wissenschaftlern den Gefallen, wie ein typischer Krater auszusehen. Die Aorounga-Struktur im nordafrikanischen Tschad dürfte bereits 345 Millionen Jahre alt sein und ist dementsprechend sehr stark verwittert. Gerade aus dem All sind sowohl der äußere als auch der innere Ring zu erkennen. Der kräftige Wind hat dabei wie ein Baumeister parallele Strukturen hinzufügt: Sie bestehen aus windbeständigen Felsrücken, den so genannten Yardangs, zwischen denen Sanddünen vom Wind getrieben hindurchwandern. Der Krater Tin Bider im algerischen Teil der Sahara überragt entgegen aller Krater-Klischees die Umgebung. Er besteht aus unterschiedlichen Gesteinsschichten, die im Laufe der Zeit ebenso unterschiedlich stark erodierten.

Einer der Lieblingskrater von DLR-Wissenschaftler Gottwald "liegt praktisch vor der Haustür": der Rieskrater im Übergang von der Schwäbischen zur Fränkischen Alb. Als vor 14,8 Millionen Jahren hier ein Asteroid mit einem Durchmesser von einem Kilometer einschlug, waren die Auswirkungen beeindruckend. An dem zunächst zehn Kilometer großen Krater rutschten die Ränder ab und so vergrößerte sich der Kraterkessel auf 24 Kilometer. Die Erhebung im Inneren des Kraterkessels kollabierte - und produzierte damit einen weiteren, kleineren Ring.

Noch in einer Entfernung von 40 Kilometern wurde die Erde mit einer bis zu hundert Meter dicken Schicht aus Impaktgestein bedeckt. Auch ein See füllte für einige Millionen Jahre den Krater. Was heute von dem einstigen Krater übrig ist, lässt sich am deutlichsten im digitalen Höhenmodell der beiden Radarsatelliten erkennen.

Noch hat der DLR-Wissenschaftler allerdings nur die bereits bekannten Krater im Blick. "Unser Ziel ist es aber, mit den Informationen unserer Radarsatelliten später einmal in ausgewählten Gebieten auch nach bisher noch nicht identifizierten Kratern Ausschau zu halten - das ist allerdings sehr trickreich", betont DLR-Wissenschaftler Gottwald. Er arbeitet deshalb auch unter anderem mit Geologen der Universität Freiburg und des Museums für Naturkunde in Berlin zusammen.

"Letztendlich kann nur eine Untersuchung des Gesteins vor Ort bestätigen, ob es sich tatsächlich um einen Einschlagskrater handelt," so Gottwald. Das Geländemodell des DLR ist dabei so genau, dass es nicht nur Hinweise auf einen möglichen Einschlag liefert, sondern auch hilft, die oftmals beschwerlichen Expeditionen zum Ort des Geschehens zu planen und durchzuführen.

Forum
Die Einschlagkrater der Erde im Visier. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
TerraSAR-X: Vulkanüberwachung aus dem All - 10. September 2014
Radarsatelliten: Die Siedlungsspuren der Menschen - 25. Juni 2014
TanDEM-X: Präzise 3D-Karte der Erde - 21. Mai 2014
Erdbeobachtung: Geschwindigkeitsmessung eines Gletschers - 3. Februar 2014
TerraSAR-X: Radarsatellit mit erweiterten Fähigkeiten - 30. August 2013
TerraSAR-X: Deutscher Radarsatellit fünf Jahre im All - 15. Juni 2012
TanDEM-X & TerraSAR-X: Einheitliches Höhenmodell der Erde in 3D - 16. Januar 2012
TanDEM-X: Erste 3D-Bilder aus engem Formationsflug - 19. Oktober 2010
TanDEM-X: Satelliten-Duo beginnt engen Formationsflug - 15. Oktober 2010
TanDEM-X: Satellit liefert erste 3D-Bilder - 22. Juli 2010
TanDEM-X: Erste Bilder in Rekordzeit - 28. Juni 2010
TanDEM-X: Zweiter deutscher Radarsatellit im All - 21. Juni 2010
TanDEM-X: Zweiter deutscher Radarsatellit einsatzbereit - 29. April 2010
TanDEM-X: Zweiter deutscher Radarsatellit fertiggestellt - 9. Juni 2009
TerraSAR-X: Deutscher Radarsatellit im Regelbetrieb - 14. Januar 2008
TerraSAR-X: Eindrucksvoller Blick auf die Welt - 13. August 2007
TerraSAR-X: Radarsatellit liefert erste Bilder - 21. Juni 2007
TerraSAR-X: Deutscher Radarsatellit erfolgreich gestartet - 15. Juni 2007
TerraSAR-X: Radarsatellit soll jetzt Mitte Juni starten - 6. Juni 2007
TerraSAR-X: Deutscher Radarsatellit vor dem Start - 1. März 2007
TanDEM-X: Radarsatellit soll Gesellschaft bekommen - 18. September 2006
TerraSAR-X: Deutscher Radarsatellit soll im Herbst starten - 21. März 2006
TERRASAR: Deutscher Erderkundungs-Satellit beschlossen - 11. April 2002
Links im WWW
DLR
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2015/06