Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ANTIMATERIE
Einzelne Antiprotonen eiskalt eingefangen
Redaktion / idw / Pressemitteilung der Universität Düsseldorf
astronews.com
14. August 2024

Warum gibt es Materie im Universum und praktisch keine Antimaterie? Der Forschungskollaboration BASE am CERN in Genf ist auf dem Weg zur Beantwortung dieser Frage ein experimenteller Durchbruch gelungen. Er kann dazu beitragen, die Masse und das magnetische Moment von Antiprotonen so präzise wie noch nie zu vermessen – und so mögliche Materie-Antimaterie-Asymmetrien zu erkennen.

Maxwell-Daemon-Kühldoppelfalle

Die "Maxwell-Daemon-Kühldoppelfalle", die im Rahmen der BASE-Kollaboration entwickelt wurde. Mit ihr können Antiprotonen sehr schnell auf Temperaturen abgekühlt werden, die für Hochpräzisionsmessungen notwendig sind. Bild: BASE-Kollaboration / Stefan Ulmer [Großansicht]

 Nach dem Urknall vor über 13 Milliarden Jahren war das Universum voll hochenergetischer Strahlung. Aus ihr entstanden ständig Paare von Materie- und Antimaterieteilchen – beispielsweise Protonen und Antiprotonen. Trifft ein solches Paar wieder zusammen, zerstrahlen die Teile erneut zu reiner Energie. In der Summe sollten also exakt gleiche Mengen Materie und Antimaterie entstehen und wieder zerstrahlen - und das Universum weitgehend materielos sein. Offensichtlich gibt es aber ein Ungleichgewicht – eine Asymmetrie –, denn es gibt materielle Objekte. Es ist eine winzige Menge mehr Materie als Antimaterie entstanden, im Widerspruch zum Standardmodell der Teilchenphysik.

Die Physik versucht deshalb seit Jahrzehnten das Standardmodell zu erweitern. Dafür benötigt man auch präziseste Messung fundamentaler physikalischer Größen. Hier setzt die BASE-Kollaboration ("Baryon Antibaryon Symmetry Experiment") an, an der die Universitäten in Düsseldorf, Hannover, Heidelberg, Mainz, Tokio und der ETH Zürich beteiligt sind sowie die Forschungslabore CERN in Genf, GSI in Darmstadt, das MPI für Kernphysik in Heidelberg, die Physikalisch-Technische Bundesanstalt in Braunschweig und RIKEN in Wako / Japan.

"Die zentrale Frage, der wir nachgehen wollen: Sind Materie- und ihre zugehörigen Antimaterieteilchen exakt gleich schwer und haben sie die exakt gleichen magnetischen Momente, oder gibt es winzige Abweichungen?", erläutert Prof. Dr. Stefan Ulmer, Sprecher von BASE. Er ist Professor am Institut für Experimentalphysik der Heinrich-Heine-Universität Düsseldorf (HHU) und forscht zusätzlich am CERN und am RIKEN. Die Physikerinnen und Physiker wollen mit extrem hoher Auflösung den sogenannten Spin-Flip – Quantenübergänge des Protonenspins – bei einzelnen, ultrakalten und damit extrem energiearmen Antiprotonen messen; also das Umklappen des Eigendrehimpulses. "Aus den gemessenen Übergangsfrequenzen können wir unter anderem das magnetische Moment der Antiprotonen – also sozusagen deren winzige innere Stabmagnete – vermessen", erläutert Ulmer, und: "Wir wollen so mit bisher unerreichter Genauigkeit schauen, ob diese Stabmagnete in Protonen und Antiprotonen dieselbe Stärke aufweisen."

Anzeige

Einzelne Antiprotonen für die Messungen so zu präparieren, dass entsprechende Messgenauigkeiten erreicht werden, ist eine äußert aufwändige experimentelle Aufgabe. Hierbei hat die BASE-Kollaboration nun einen entscheidenden Fortschritt erzielt. "Wir benötigen Antiprotonen mit einer maximalen Temperatur von 200 mK, also extrem kalte Teilchen", erläutert Dr. Barbara Maria Latacz vom CERN. "Nur so sind verschiedene Spin-Quantenzustände unterscheidbar. Mit bisherigen Techniken dauerte es 15 Stunden, um Antiprotonen, die wir aus dem Beschleunigerkomplex des CERN beziehen, so weit abzukühlen. Mit unserer neuen Kühlmethode verkürzen wir diese Zeit auf acht Minuten."

Erreicht haben die Forschenden dies, indem sie quasi zwei sogenannte Penningfallen zu einem Gerät zusammenschlossen, zu einer "Maxwell-Daemon-Kühldoppelfalle". Mit ihr ist es möglich, nur die kältesten Antiprotonen gezielt zu präparieren und für die nachfolgende Spin-Flip-Messung zu nutzen; wärmere Teilchen werden aussortiert. So entfällt die Zeit, um wärmere Antiprotonen abzukühlen. Die erhebliche kürzere Kühlzeit ist notwendig, um die nötige Messstatistik in wesentlich kürzerer Zeit zu erhalten, so dass die Messunsicherheiten weiter gesenkt werden können. "Wir brauchen mindestens 1000 einzelne Messzyklen. Mit unserer neuen Falle heißt dies, dass wir rund einen Monat Messzeit benötigen – im Vergleich zu knapp zehn Jahren mit der alten Technik, was experimentell nicht realisierbar wäre", so Latacz.

"Mit der BASE-Falle konnten wir bereits messen, dass sich die magnetischen Momente von Proton und Antiproton um maximal ein Milliardstel – wir sprechen von 10-9 – unterscheiden. Wir konnten die Fehlerrate der Spin-Identifikation um mehr als einen Faktor 1.000 verbessern. In der nächsten Messkampagne hoffen wir, die Genauigkeit im magnetischen Moment auf 10-10 verbessern zu können." Zu den weiteren Plänen meint Ulmer: "Wir wollen eine mobile Teilchenfalle bauen, mit der wir am CERN in Genf erzeugte Antiprotonen in ein neues Labor an der HHU transportieren können. Dieses ist so eingerichtet, dass wir hoffen dürfen, die Messgenauigkeit um mindestens einen weiteren Faktor 10 zu verbessern."

Die Ergebnisse wurden in einem Fachartikel veröffentlicht, der in der Zeitschrift Physical Review Letters erschienen ist.

Forum
Einzelne Antiprotonen eiskalt eingefangen. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
CERN: Genauester Vergleich von Materie und Antimaterie - 6. Januar 2022
Antimaterie: Kein Unterschied zu Materie messbar - 19. Januar 2017
Elementarteilchenphysik: Materie-Antimaterie-Symmetrie erneut bestätigt - 14. November 2016
Materie und Antimaterie: Suche nach dem kleinen Unterschied - 7. September 2015
Teilchenphysik: Proton und Antiproton genau vermessen - 18. August 2015
Physik: Plasma aus Materie und Antimaterie im Labor - 4. Mai 2015
Teilchenphysik: Antimaterie und Materie sind symmetrisch - 28. Juli 2011
Teilchenphysik: Forschung mit tiefgekühlten Neutronen - 9. Mai 2011
CERN: Forscher fangen Anti-Wasserstoff ein - 18. November 2010
Teilchenphysik: Die vierte Eigenschaft des Elektrons - 19. Juli 2010
Antimaterie: Forscher werfen Blick in Gegenwelt - 30. Oktober 2002
Teilchenphysik: Der Unterschied von Materie und Antimaterie - 13. Juli 2001
Links im WWW
Latacz, B. M. et al. (2024): Orders of Magnitude Improved Cyclotron-Mode Cooling for Nondestructive Spin Quantum Transition Spectroscopy with Single Trapped Antiprotons, Phys. Rev. Lett., 133, 053201
Heinrich-Heine-Universität Düsseldorf
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2024/08