Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
GW190521
Erklärung für ein ungewöhnliches Gravitationswellensignal
Redaktion / Pressemitteilung der Universität Jena
astronews.com
21. November 2022

Forschende aus Jena und Turin haben die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert: Das Signal GW190521 könnte aus der Verschmelzung zweier Schwarzer Löcher resultieren, die sich gegenseitig mit ihrem Gravitationsfeld eingefangen und sich anschließend auf einer exzentrischen Bahn umeinander bewegt haben.

Simulation

Numerische Simulation, die die Krümmung der Raumzeit während der Verschmelzung der beiden Schwarzen Löcher darstellt. Bild: AG Bernuzzi / Universität Jena[Großansicht]

Wenn Schwarze Löcher im Universum aufeinanderprallen, dann beben Raum und Zeit: Die bei der Verschmelzung freiwerdende Energiemenge ist so groß, dass sie die Raumzeit in Schwingung versetzt – ähnlich wie Wellen auf einer Wasseroberfläche. Diese Gravitationswellen breiten sich durch das gesamte Universum aus und lassen sich auch in Tausenden von Lichtjahren Entfernung noch messen – so wie am 21. Mai 2019, als die beiden Gravitationswellenobservatorien LIGO in den USA)und Virgo in Italien ein solches Signal einfingen.

Das nach dem Datum seiner Entdeckung GW190521 benannte Gravitationswellenereignis hat seither in der Fachwelt für Gesprächsstoff gesorgt, da es sich von den zuvor gemessenen Signalen deutlich unterscheidet. Das Signal war zunächst so interpretiert worden, dass es sich bei der Kollision um zwei Schwarze Löcher handelte, die sich auf nahezu kreisförmigen Bahnen umeinander bewegen. "Solche binären Systeme können durch eine Reihe astrophysikalischer Prozesse entstehen", erklärt Prof. Dr. Sebastiano Bernuzzi, theoretischer Physiker von der Universität Jena. So seien die meisten von LIGO und Virgo entdeckten Schwarzen Löcher stellaren Ursprungs. "Das heißt, sie sind die Überreste von massereichen Sternen in Doppelsternsystemen", so Bernuzzi weiter, der die aktuelle Studie leitete. Solche Schwarzen Löcher umrunden einander auf quasi kreisförmigen Bahnen, so wie es die ursprünglichen Sterne zuvor auch schon taten.

Anzeige

"GW190521 verhält sich aber deutlich anders", macht Rossella Gamba deutlich, die im Jenaer Graduiertenkolleg 2522 promoviert und zu Bernuzzis Team gehört. "Seine Morphologie und seine explosionsartige Struktur unterscheiden sich extrem von früheren Beobachtungen." Also machten sich Gamba und ihre Kollegen auf die Suche nach einer alternativen Erklärung für das außergewöhnliche Gravitationswellensignal. Mit einer Kombination aus modernsten analytischen Methoden und numerischen Simulationen auf Supercomputern berechneten sie unterschiedliche Modelle für die kosmische Kollision.

Sie kamen zu dem Ergebnis, dass diese statt auf einer quasi kreisförmigen auf einer stark exzentrischen Bahn erfolgt sein musste: Ein Schwarzes Loch bewegt sich dabei zunächst ungebunden in einer relativ dicht mit Materie gefüllten Umgebung und kann, sobald es in die Nähe eines anderen Schwarzen Loches gelangt, von dessen Gravitationsfeld "eingefangen" werden. Auch dies führt zur Entstehung eines binären Systems, allerdings bewegen sich die beiden Schwarzen Löcher hier nicht kreisförmig, sondern exzentrisch, in taumelnden Bewegungen umeinander.

"Ein solches Szenario erklärt die Beobachtungen deutlich besser als jede andere bisher vorgestellte Hypothese. Die Wahrscheinlichkeit liegt bei 1:4300", sagt Matteo Breschi, Doktorand und Koautor der Studie, der die Infrastruktur für die Analyse entwickelt hat. Und Postdoktorand Dr. Gregorio Carullo ergänzt: "Auch wenn wir derzeit noch nicht genau wissen, wie oft solche dynamischen Begegnungen von Schwarzen Löchern überhaupt vorkommen, rechnen wir nicht damit, dass sie häufig passieren." Das mache die aktuellen Ergebnisse umso spannender. Dennoch bedarf es noch weiterer Forschungsarbeit, um die Entstehungsprozesse von GW190521 zweifelsfrei aufzuklären.

Die Ergebnisse des Teams wurden in der Fachzeitschrift Nature Astronomy veröffentlicht.

Forum
Erklärung für das ungewöhnliche Gravitationswellensignal GW190521. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Gravitationswellen: Neuronales Netz hilft bei Signalanalyse - 10. Dezember 2021
Gravitationswellen: Katalog mit 35 neuen Gravitationswellensignalen - 8. November 2021
Gravitationswellen: Dritter Beobachtungslauf fortgesetzt - 12. November 2019
Gravitationswellen: Verschmelzung von Neutronenstern und Schwarzem Loch? - 3. Mai 2019
Gravitationswellen: Neuer Beobachtungslauf beginnt - 1. April 2019
Gravitationswellen: Die Ära der Gravitationswellen-Astronomie - 6. Juli 2016
LIGO: Zweites Gravitationswellen-Signal entdeckt - 16. Juni 2016
Gravitationswellen: Neutronenstern-Paare im Visier - 10. Mai 2016
LIGO: Erste direkte Beobachtung von Gravitationswellen - 11. Februar 2016
Links im WWW
Universität Jena
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2022/11