astronews.com
Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt |
Mithilfe von Daten des MeerKAT-Radioteleskops in Südafrika wurden im Kugelsternhaufen Terzan 5 zehn bislang unbekannte schnell rotierende Neutronensterne entdeckt. Viele von ihnen befinden sich in ungewöhnlichen und seltenen Doppelsternsystemen. Nun soll mithilfe des Computerprojekts Einstein@Home nach weiteren Pulsaren gesucht werden.
"Wir wissen, dass Kugelsternhaufen wie Terzan 5 viele schnell rotierende Neutronensterne beherbergen, und wir wissen auch, dass frühere Beobachtungen dieses Haufens wahrscheinlich einige übersehen haben. Trotzdem haben wir uns sehr gefreut, zehn bisher unbekannte Millisekunden-Pulsare zu entdecken, darunter einige in ungewöhnlichen und extremen Doppelsternsystemen", sagt Prajwal Voraganti Padmanabh, wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut; AEI) in Hannover, zuvor tätig am Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn. "Die Kombination von hochempfindlichen Beobachtungen mit MeerKAT, Archivdaten des Green-Bank-Teleskops aus fast zwei Jahrzehnten und cleveren und effizienten Datenanalysemethoden haben diese Entdeckungen und ihre vollständige Charakterisierung ermöglicht." Neutronensterne sind kompakte Überreste von Supernova-Explosionen. Sie bestehen aus exotischer, extrem dichter Materie, sind schwerer als unsere Sonne und haben einen Durchmesser von nur etwa 20 Kilometern. Aufgrund ihrer starken Magnetfelder und schnellen Rotation senden sie wie ein kosmischer Leuchtturm gebündelte Radiowellen aus. Wenn die Rotation diese Strahlenbündel regelmäßig auf die Erde richtet, wird der Neutronenstern als pulsierende Radioquelle – als Radiopulsar – sichtbar. Einige dieser Radiopulsare sammeln in Doppelsternsystemen von ihrem Begleiter Materie ein, die sie auf Rotationsperioden von wenigen Millisekunden beschleunigt. Sie werden als Millisekundenpulsare bezeichnet.
Der Kugelsternhaufen Terzan 5 ist einer der Orte mit der höchsten Sterndichte in unserer Milchstraße. In seinem Kernbereich, wo diese Dichte millionenfach höher ist als in der Umgebung unserer Sonne, treffen sich die Sterne und interagieren viel häufiger als anderswo. Dies macht ihn zu einer sehr effizienten "Fabrik" für Pulsare in außergewöhnlichen Doppelsternen. Vor der jetzt veröffentlichten Studie waren bereits 39 Pulsare in Terzan 5 bekannt; nun kamen zehn weitere hinzu. Die Forscherinnen und Forscher machten ihre Entdeckungen in Daten des MeerKAT-Radioteleskops. MeerKAT ist eine Anlage von 64 Antennen in der südafrikanischen Karoo mit einer beispiellosen Empfindlichkeit für Quellen am Südhimmel. Im Rahmen des TRansients and Pulsars using MeerKAT (TRAPUM) Large Survey Project beobachtete das Team Terzan 5 zweimal für mehrere Stunden mit jeweils 56 MeerKAT-Antennen. Die Hardware für TRAPUM wurde vom MPIfR finanziert, entworfen und installiert. "Mittels spezieller Hardware und Software haben wir die Daten der 56 einzelnen MeerKAT-Antennen zu einem virtuellen Teleskop kombiniert, das gleichzeitig fast 300 eng beieinander liegende Himmelspositionen im Bereich von Terzan 5 beobachtet hat", so Padmanabh. "Das führt natürlich dazu, dass wir viel mehr Daten auswerten müssen als bei Beobachtungen mit einem einzelnen Teleskop. Aber es hilft uns auch, die Position jedes neuen Pulsars viel genauer zu bestimmen. Das ist bei Einzelteleskopen normalerweise der schwierige Teil, der Monate an zusätzlichen Beobachtungen erfordert." Das Team bereitete die Rohdaten vor und suchte dann an den 45 Positionen, die den Zentralbereich von Terzan 5 abdecken, nach Pulsaren. Ihr Arbeitspferd: der Großrechner Atlas am AEI Hannover, der rund 99.000 logische CPU-Kerne in fast 3200 Servern sowie 400 Grafikkarten mit fast einer Million Kernen für die Datenanalyse bereitstellte. Mit dieser Suche konnten zehn neue Millisekunden-Pulsare aufgespürt werden. Für jeden in den MeerKAT-Daten an einer genau definierten Himmelsposition gefundenen Pulsar wurde auf die Archivdaten des Green-Bank-Teleskops zurückgegriffen, um zu überprüfen, ob die Entdeckung dort bestätigt werden konnte. "Ohne das Archiv des Green-Bank-Teleskops wären wir nicht in der Lage gewesen, diese Pulsare zu charakterisieren und ihre Astrophysik zu verstehen", sagt Scott Ransom, Astronom am National Radio Astronomy Observatory (NRAO). Dadurch war man in der Lage, für alle Entdeckungen sogenannte Timing-Modelle zu erstellen. Diese mathematischen Beschreibungen sagen die Ankunftszeit jedes einzelnen der mehreren hundert Milliarden Pulse über die gesamten 19 Jahre Beobachtungszeit präzise voraus. Um diese Genauigkeit zu erreichen, müssen die Timing-Modelle viele astrophysikalische Eigenschaften berücksichtigen, die die Doppelsysteme mit Pulsaren beschreiben, einschließlich relativistischer Effekte, die sich aus Einsteins allgemeiner Relativitätstheorie ergeben. Das ermöglichte es den Forschern, die Neutronensterne, ihre Umlaufbahnen, ihre Begleiter und viele andere Eigenschaften genau zu untersuchen und zu überwachen. "Alle zehn neu entdeckten Pulsare sind ungewöhnlich und besonders und helfen uns, Kugelsternhaufen und Neutronensterne besser zu verstehen und die allgemeine Relativitätstheorie zu testen. Aber einige von ihnen sind selbst in dieser Gruppe selten und speziell", sagt Paulo Freire, wissenschaftlicher Mitarbeiter in der Forschungsabteilung "Radioastronomische Fundamentalphysik" am MPIfR. "Diese Systeme sind nur die jüngsten Beispiele für die wunderbaren, exotischen Sternsysteme, die wir mit MeerKAT in diesen dichten Kugelsternhaufen gefunden haben. Zusammen mit jüngsten Beispielen wie dem Objekt NGC 1851E, das das erste Pulsar-Schwarzes-Loch-System darstellen könnte, zeigen uns die Ergebnisse, dass Kugelsternhaufen eine Goldmine voller Möglichkeiten darstellen." Eine der Entdeckungen ist ein Doppelsternsystem, das möglicherweise aus zwei Neutronensternen besteht. Diese Doppelneutronensterne sind sehr selten – gerade einmal 20 von mehr als 3600 bekannten Pulsaren gehören zu dieser besonderen Spezies. Sollten zukünftige Beobachtungen diesen Verdacht bestätigen, wäre das Doppelsystem auch ein Rekordbrecher mit dem am schnellsten rotierenden Pulsar und der längsten Umlaufzeit solcher Objekte. Andererseits könnte es sich bei diesem System auch um einen massereichen Pulsar in Begleitung eines Weißen Zwergs handeln. Ein schwerer Pulsar könnte Aufschluss über die innere Zusammensetzung von Neutronensternen geben. Die extrem elliptische Umlaufbahn eines anderen neuen Pulsars deutet auf eine Reihe von engen Begegnungen mit anderen Sternen in seiner Vergangenheit hin. Wenn im Gedränge im Zentrum von Terzan 5 Sterne an einem Doppelsternsystem vorbeiziehen, kann ihre Schwerkraft dessen Bahnen stören und sogar seine Komponenten herausschleudern oder deren Plätze einnehmen. Nachdem das Team die Zahl der bekannten Pulsare in Terzan 5 schon um mehr als ein Viertel gesteigert hat, plant es bereits, weitere zu finden. Die Suche wird erweitert auf Pulsare in Doppelsystemen, deren Umlaufzeiten deutlich kürzer sind als die der bisher entdeckten. Die Forscher beabsichtigen, mit der Hilfe des verteilten freiwilligen Computerprojekts Einstein@Home alle mit MeerKAT gewonnenen Daten von Terzan 5 zu analysieren. Das Projekt, das von Wissenschaftlerinnen und Wissenschaftlern am AEI Hannover geleitet wird, hat bereits mehr als 90 neue Neutronensterne entdeckt. Mit MeerKAT soll der Kugelsternhaufen Terzan 5 zudem auch bei höheren Radiofrequenzen beobachtet werden, was die Chancen auf neue Entdeckungen weiter erhöhen dürfte. "Nach allem, was wir über Terzan 5 wissen, erwarten wir, dass er noch viele weitere extreme Doppelsternsysteme beherbergt, von denen jedes ein potenzielles Labor für die Überprüfung der Einsteinschen Relativitätstheorie ist, so Padmanabh. "Wer weiß, vielleicht ist das nächste, was wir in diesem erstaunlichen Kugelsternhaufen finden, etwas so Exotisches wie ein Paar Millisekunden-Pulsare oder ein Millisekunden-Pulsar, der ein Schwarzes Loch umkreist?" Über ihre Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Astronomy & Astrophysics erschienen ist.
|
|
|
^ | Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten. W3C |
Diese Website wird auf einem Server in der EU gehostet. |
© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020 |