Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
CERN
Mit BASE auf der Suche nach Dunkler Materie
Redaktion / Pressemitteilung des Max-Planck-Instituts für Kernphysik
astronews.com
28. Januar 2021

Mit dem Experiment BASE am Antiprotonen-Entschleuniger des CERN in Genf konnte nun eine neue Grenze für die Masse von Axion-ähnlichen Teilchen bestimmt werden. Bei diesen hypothetischen Partikeln handelt es sich um Kandidaten für Dunkle Materie. Die Ergebnisse sind auch deshalb bemerkenswert, weil BASE nicht für solche Untersuchungen konzipiert wurde.

BASE

Jack Devlin arbeitet an der BASE-Elektronik. Foto: BASE-Kollaboration/CERN [Großansicht]

"BASE verfügt über extrem empfindliche Detektionssysteme mit abgestimmten supraleitenden Schwingkreisen, um die Eigenschaften einzelner gefangener Antiprotonen zu untersuchen. Wir haben erkannt, dass diese Detektoren auch für die Suche nach Signalen von anderen Teilchen geeignet sind", erläutert Jack Devlin, ein CERN-Forschungsstipendiat, der am BASE-Experiment arbeitet. BASE steht für Baryon-Antibaryon-Symmetrie-Experiment. Nun hat das Team einen der Detektoren als Antenne benutzt, um nach einer neuen Art von Axion-ähnlichen Teilchen zu suchen.

Axionen oder Axion-ähnliche Teilchen sind Kandidaten für kalte Dunkle Materie. Aufgrund astrophysikalischer Beobachtungen geht man davon aus, dass etwa 26,8 Prozent des Materie-Energie-Gehalts des Universums aus Dunkler Materie und nur etwa fünf Prozent aus normaler − sichtbarer − Materie bestehen; der Rest ist die mysteriöse Dunkle Energie. Diese unbekannten Teilchen spüren die Schwerkraft, reagieren aber kaum auf die anderen fundamentalen Kräfte, wenn sie diese überhaupt erfahren.

Die etablierte Theorie der fundamentalen Kräfte und Teilchen, das Standardmodell der Elementarteilchenphysik, enthält keine Teilchen mit den passenden Eigenschaften für kalte Dunkle Materie. Da das Standardmodell jedoch viele Fragen unbeantwortet lässt, haben Physiker darüber hinaus gehende Theorien vorgeschlagen, von denen einige die Natur der Dunklen Materie erklären. Manche dieser Theorien schlagen die Existenz von Axionen oder Axion-ähnlichen Teilchen vor. Diese Theorien müssen getestet werden, und auf der ganzen Welt gibt es viele Experimente, die nach diesen Teilchen suchen.

Anzeige

Das BASE-Experiment am CERN hat nun zum ersten Mal die Detektoren, die zum Nachweis einzelner Antiprotonen entwickelt wurden, für die Suche nach Dunkler Materie eingesetzt. Im Vergleich zu den großen Detektoren am LHC ist BASE ein wesentlich kleineres Experiment. Der Antiprotonen-Entschleuniger des CERN versorgt es mit Antiprotonen. BASE fängt diese Teilchen ein und speichert sie in einer Penningfalle, einer Kombination aus elektrischen und starken magnetischen Feldern. Um Kollisionen mit gewöhnlicher Materie zu vermeiden, wird die Falle bei etwa fünf Kelvin (~−268 °C) betrieben, wo äußerst niedrige Drücke, ähnlich denen im Weltraum, erreicht werden (10−18 mbar). In dieser extrem gut isolierten Umgebung können Wolken von gefangenen Antiprotonen über Jahre hinweg existieren.

Durch sorgfältiges Einstellen der elektrischen Felder können die Physiker bei BASE einzelne Antiprotonen isolieren und in einen separaten Teil der Falle bringen. In diesem Bereich können sehr empfindliche resonante supraleitende Detektoren die winzigen elektrischen Ströme nachweisen, die von einzelnen Antiprotonen erzeugt werden, während sie sich in der Falle bewegen.

In der nun veröffentlichten Studie suchte das BASE-Team nach unerwarteten elektrischen Signalen in ihren empfindlichen Antiprotonendetektoren. Das Herzstück jedes Detektors ist eine kleine, etwa vier Zentimeter durchmessende, Torus-förmige Spule, die ähnlich aussieht wie die Transformatorspulen, die man in vielen gewöhnlichen elektronischen Geräten findet. Die BASE-Detektoren sind jedoch supraleitend − haben also fast keinen elektrischen Widerstand, und alle umgebenden Komponenten sind sorgfältig so gewählt, dass sie keine elektrischen Verluste verursachen. Das macht die BASE-Detektoren extrem empfindlich gegenüber elektromagnetischen Hochfrequenzfeldern.

Die Physikerinnen und Physiker nutzten jetzt erstmals das in der Penningfalle gespeicherte Antiproton als Quantensensor, um das Hintergrundrauschen ihres Detektors genau zu kalibrieren. Dann begannen sie, nach ungewöhnlichen aber schwachen Signalen zu suchen, die möglicherweise von Axion-ähnlichen Teilchen und ihren möglichen Wechselwirkungen mit Photonen verursacht werden. Im untersuchten Frequenzbereich konnten sie bisher kein derartiges Signal nachweisen, was im Umkehrschluss bedeutet, dass es BASE gelungen ist, neue Grenzen für die Masse Axion-artiger Teilchen zu setzen und ihre möglichen Wechselwirkungen mit Photonen zu untersuchen.

Damit eröffnet BASE anderen Penningfallen-Experimenten die Möglichkeit, sich an der Suche nach Dunkler Materie zu beteiligen. Verschiedene Änderungen können die Detektionsempfindlichkeit weiter verbessern, um in Zukunft empfindlichere Schranken an die Konversion der hypothetischen Axion-ähnlichen Teilchen in Photonen zu setzen. "Mit dieser neuen Technik haben wir zwei bisher nicht miteinander verbundene Zweige der Experimentalphysik kombiniert: die Axion-Physik und die Hochpräzisions-Penningfallen-Physik. Unser Laborexperiment ist komplementär zu astrophysikalischen Experimenten und besonders empfindlich im niedrigen Axion-Massenbereich. Mit einem eigens dafür gebauten Messinstrument könnten wir die Bandbreite und Empfindlichkeit erhöhen, um die Landschaft der Axion-Suche mit Penningfallen-Techniken zu erweitern", hofft Stefan Ulmer, Sprecher der BASE-Kollaboration.

Über ihre Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Physical Review Letters erschienen ist.

Forum
Mit BASE auf der Suche nach Dunkler Materie. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Dunkle Materie: Mit Antimaterie auf Dunkelmaterie-Jagd - 14. November 2019
Teilchenphysik: Die Gleichheit von Proton und Antiproton - 27. November 2017
Teilchenphysik: Proton und Antiproton scheinen identisch - 20. Oktober 2017
Antimaterie: Kein Unterschied zu Materie messbar - 19. Januar 2017
Elementarteilchenphysik: Materie-Antimaterie-Symmetrie erneut bestätigt - 14. November 2016
Dunkle Materie: Die Masse des Axions - 3. November 2016
Axionen: Auf der Suche nach Relikten des Urknalls - 19. April 2005
Links im WWW
Devlin et al.: Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap, Phys. Rev. Lett, 126, 041301 (2021)
Max-Planck-Institut für Kernphysik
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2020. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2021/01