Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
KERNPHYSIK
Neuer Blick auf das Wasserstoffbrennen massereicher Sterne
Redaktion / idw / Pressemitteilung des  Helmholtz-Zentrums Dresden-Rossendorf
astronews.com
17. Oktober 2023

Im Dresdner Felsenkeller-Beschleuniger wurde jetzt eine Kernreaktion untersucht, die im Inneren massereicher Sterne abläuft. Sie ist der erste Schritt des sogenannten CNO-Zyklus und wurde bereits zuvor mit Beschleunigern erforscht. Doch in der neuen Studie erlebten das Team eine Überraschung: Der bislang akzeptierte Wert für den Wirkungsquerschnitt muss wohl korrigiert werden.

Kernreaktion

Neuer Blick auf eine altbekannte Kernreaktion: Beim Zusammenprall eines Kohlenstoffkerns mit einem Wasserstoffkern entsteht das Isotop Stickstoff-13 und Gammastrahlung wird frei. Bild: Bernd Schröder / HZDR [Großansicht]

"Wir haben eine altbekannte Kernreaktion unter die Lupe genommen, die für die Elemententstehung in massereichen Sternen bedeutsam und darüber hinaus eine der frühesten ist, die im Labor mit Beschleunigern untersucht wurde: Die Kollision eines Wasserstoffkerns mit einem Kohlenstoffkern, in deren Folge das Isotop Stickstoff-13 entsteht und Gammastrahlung freigesetzt wird. Sie ist der erste Schritt des sogenannten CNO-Zyklus, auch als Bethe-Weizsäcker-Zyklus bekannt. Wir waren vor allem am Wirkungsquerschnitt dieser Reaktion interessiert, der Auskunft über die Wahrscheinlichkeit ihres Auftretens gibt", sagt Prof. Daniel Bemmerer vom Institut für Strahlenphysik des Helmholtz-Zentrums Dresden-Rossendorf (HZDR).

Diesen Parameter hat ein Team aus italienischen, ungarischen, schottischen und deutschen Wissenschaftlerinnen und Wissenschaftlern im Untertagelabor Felsenkeller nun mit bisher beispielloser Präzision bestimmt. Das überraschende Ergebnis: der bisher akzeptierte Wert muss um rund 25 Prozent nach unten korrigiert werden. Das Ergebnis legt nahe, dass das Einbrennen des CNO-Zyklus länger gedauert hat als bisher gedacht und die Emission solarer 13N-Neutrinos im Mittel näher am Zentrum der Sonne stattfindet als vermutet. Die neuen Daten erlauben zudem genauere theoretische Vorhersagen für das Verhältnis der Kohlenstoff-Isotope 12C/13C in Sternen, die wiederum helfen, Modelle für die Vorgänge in deren Innerem zu überprüfen und zu verbessern.

Sterne beziehen ihre Energie aus der Fusion von Wasserstoff zu Helium. In Abhängigkeit der Masse des Himmelskörpers sind dafür unterschiedliche Prozesse bekannt. So läuft in massearmen Sternen wie unserer Sonne vor allem die sogenannte Proton-Proton-Kette ab. In massereichen Sternen pressen die starken Gravitationskräfte die Wasserstoffkerne jedoch so sehr zusammen, dass hier deutlich höhere Temperaturen herrschen. Dadurch können die Wasserstoffkerne zusätzlich mit Kohlenstoffkernen reagieren. Obwohl diese keine zwei Prozent der interstellaren Materie ausmachen, aus der Sterne entstehen, reicht diese Konzentration aus, um den CNO-Zyklus in Gang zu bringen und am Laufen zu halten. Sie wirken dabei als Katalysator: Sie beschleunigen die Reaktion, ohne jedoch selbst dabei verbraucht zu werden. Die Netto-Reaktion ist am Ende die gleiche wie beim Proton-Proton-Zyklus: die Fusion von Wasserstoff zu Helium.

Anzeige

Doch in Sternen mit CNO-Zyklus läuft diese Reaktion wesentlich schneller ab. "Als Targets verwenden wir Scheiben aus Tantal, auf die Kohlenstoff aufgedampft ist. Darauf schießen wir Protonen, die aus unserem 5-MV-Pelletron-Beschleuniger stammen und einen relativ weiten Energiebereich überstreichen. Die bei der Reaktion entstehenden Gammaquanten können wir mit 20 empfindlichen Reinstgermanium-Detektoren nachweisen", schildert Bemmerer das experimentelle Vorgehen.

Das gemeinsam vom HZDR und der TU Dresden betriebene Untertagelabor Felsenkeller im Plauenschen Grund ist für solche Messungen optimal. Eine 45 Meter dicke Felsschicht im Stollen des ehemaligen Eislagers der Dresdner Felsenkeller-Brauerei schützt die Detektoren vor kosmischer Strahlung, deren Hintergrundsignale die Ergebnisse verfälschen können.

Die aktuelle Arbeit ist darüber hinaus ein gutes Beispiel für die innereuropäische Zusammenarbeit in der Astrophysik-Community: Ein Doktorand der Universität Padua forschte während des Experiments für sechs Monate am Felsenkeller. Die Teilnahme weiterer Messgäste aus Italien, Ungarn und Schottland wurde von der EU im Rahmen des Projekts ChETEC-INFRA finanziell unterstützt.

Über die Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Physical Review C erschienen ist.

Forum
Neuer Blick auf das Wasserstoffbrennen massereicher Sterne. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Gran Sasso: Elemententstehung nach dem Urknall im Visier - 11. Dezember 2020
Nukleosynthese: Astrophysik im Untergrund - 26. August 2014
Sterne: Neuer Teilchenbeschleuniger im Untergrundlabor? - 26. April 2010
Links im WWW
Skowronski, J. et al. (2023): Improved S factor of the 12C(p,γ)13N reaction at E=320–620 keV and the 422 keV resonance, Physical Review C, 107, L062801 (arXiv.org-Preprint)
Helmholtz-Zentrum Dresden-Rossendorf
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2023/10