Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ELEMENTENTSTEHUNG
Neutronensterne als Elementschmiede
Redaktion / Pressemitteilung des Max-Planck-Instituts für Astrophysik
astronews.com
8. September 2011

Die Produktionsstätten für die schwersten chemischen Elemente im Universum wie Blei oder Gold dürften gefunden sein - verschmelzende Neutronensterne. Wissenschaftler aus Deutschland und Belgien konnten jetzt mithilfe von detaillierten numerischen Simulationen zeigen, dass die relevanten Reaktionen tatsächlich dort ablaufen und die Elemente in den beobachteten Häufigkeiten entstehen.

Kollision

Momentaufnahmen der Verschmelzung zweier Neutronensterne. Dabei wird ein Teil der Materie zwischen den Sternen herausgedrückt und von den durch Gezeitenkräfte verformten Neutronensternen weggerissen. In dem ausgestoßenen Material laufen die verschiedensten Kernreaktionen ab und führen zur Bildung der schweren Elemente. Bild: Max-Planck-Institut für Astrophysik

Viele schwere chemische Elemente entstehen durch das nukleare Brennen in Sternen. So fusioniert auch im Inneren unserer Sonne ständig Wasserstoff zu Helium und setzt dabei Energie frei. Massereichere Sterne als die Sonne erzeugen danach aus Helium auch schwerere Elemente. Dieser Prozess funktioniert aber nur bis hin zum Eisen. Weil weiterer Energiegewinn in Fusionsreaktionen nicht möglich ist, können noch schwerere Atomkerne so nicht erzeugt werden. Sie bilden sich durch Einfang von ungeladenen Neutronen auf mittelschwere "Saatkerne".

Zwei Prozesse spielen hierbei eine besondere Rolle: der langsame und der schnelle Neutroneneinfang. Der langsame Neutroneneinfang oder s-Prozess (vom englischen "slow" für langsam) läuft bei niedrigen Neutronendichten im Inneren von Sternen in deren späten Entwicklungsstadien ab. Der schnelle r-Prozess (vom englischen "rapid" für schnell) benötigt sehr hohe Neutronendichten. Die Physiker wissen, dass dieser r-Prozess für die Entstehung eines großen Teils der schwersten Elemente verantwortlich ist, darunter Platin, Gold, Thorium und Plutonium.

Allerdings standen die Wissenschaftler vor der Frage, in welchen astrophysikalischen Objekten dieser Prozess ablaufen kann. "Die Herkunft von etwa der Hälfte der schweren Elemente im Universum war bisher ein ungelöstes Rätsel", sagt Hans-Thomas Janka, leitender Wissenschaftler am Max-Planck-Institut für Astrophysik (MPA) und Mitarbeiter im Exzellenzcluster Universe. "Lange dachte man, dass sie in Supernova-Explosionen produziert werden könnten, neuere Modelle gehen aber von dieser Theorie weg."

Ein anderes mögliches Szenario bieten Neutronensterne, die in einem Doppelsystem am Ende einer Jahrmillionen dauernden Entwicklung in einer gigantischen Kollision miteinander verschmelzen. Wissenschaftler am MPA haben nun zum ersten Mal zusammen mit einem Kollegen von der Freien Universität Brüssel (ULB) die Vorgänge, die bei einer derartigen Verschmelzung ablaufen, in allen Schritten im Detail mit Computermodellen berechnet.

Anzeige

Sie kombinierten dabei relativistische, hydrodynamische Simulationen des kosmischen Zusammenstoßes mit Berechnungen der Kernreaktionen von über 5.000 Atomkernarten (chemische Elemente und deren Isotope) in der bei der Sternkollision gewaltsam ausgeschleuderten Materie. "Durch Gezeiten- und Druckkräfte werden innerhalb von tausendstel Sekunden nach der Verschmelzung der Neutronensterne einige Jupitermassen extrem heißer Materie ausgestoßen", erklärt Andreas Bauswein, der die Simulationen am MPA durchführte.

Wenn sich dieses sogenannte Plasma auf unter 10 Milliarden Grad abgekühlt hat, laufen die verschiedensten Kernreaktionen ab, unter anderem auch radioaktive Zerfälle, und ermöglichen die Bildung sehr schwerer Elemente. "Die schweren Elemente werden dabei in verschiedenen Reaktionsketten mehrfach prozessiert, wobei Zerfälle, die zur Spaltung superschwerer Nuklide führen, eine entscheidende Rolle spielen. Dadurch hängt die endgültige Häufigkeitsverteilung der entstandenen Elemente nur wenig von den Ausgangsbedingungen des Modells ab", ergänzt Stephane Goriely, der ULB-Wissenschaftler und nukleare Astrophysiker des Teams.

Dies passt gut zu bereits länger gehegten Vermutungen, dass nur die Reaktionseigenschaften der beteiligten Atomkerne ausschlaggebend für die produzierte Elementverteilung sein sollten. Nur so lässt sich verstehen, warum in allen untersuchten Sternen wie auch im Sonnensystem nahezu identische relative Häufigkeiten der schweren r-Prozess-Elemente beobachtet werden. Die Simulationen zeigten, dass die Häufigkeitsverteilung der schwersten Elemente sehr gut mit der in unserem Sonnensystem beobachteten übereinstimmt.

Kombiniert man das Ergebnis der Modellrechnungen mit der geschätzten Zahl von Neutronensternkollisionen, die in der Milchstraße stattgefunden haben, so bestätigt sich, dass solche Ereignisse tatsächlich die Hauptquellen der schwersten chemischen Elemente im Universum sein können.

Um die theoretischen Vorhersagen weiter zu verfeinern, sind neue Studien geplant, sowohl zusätzliche Computersimulationen, die die physikalischen Prozesse noch genauer nachbilden, als auch Beobachtungskampagnen, um die frisch erzeugten schweren Elemente zum ersten Mal direkt am Ort ihres Entstehens nachzuweisen. Durch den radioaktiven Zerfall der superschweren Atomkerne wird das ausgeschleuderte Material nämlich stark geheizt und erstrahlt dadurch fast so hell wie eine Supernova-Explosion eines Sterns, wenngleich nur für wenige Tage. Astronomen suchen bereits fieberhaft nach derartigen Ereignissen.

Forum
Kollidierende Neutronensterne als Elementschmiede. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Elemententstehung: Die mysteriösen Inseln der Inversion - 1. Februar 2011
Supernovae: Neuer Prozess bei Elemententstehung entdeckt - 4. Mai 2006
Elemententstehung: Fluor in massearmen Stern entdeckt -. 28. April 2005
Sterne: Der Elemententstehung auf der Spur - 8. November 2001
Elemententstehung: Das seltenste Isotop im All - 24. März 2000
Links im WWW
Max-Planck-Institut für Astrophysik
Preprint des Fachartikels bei arXiv.org
In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2011/09