Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
EVENT HORIZON TELESCOPE
Das drehende Licht vom Rand eines Schwarzen Lochs
Redaktion / Pressemitteilung des Max-Planck-Instituts für Radioastronomie
astronews.com
15. November 2023

Mithilfe des Event Horizon Telescope, einer Zusammenschaltung mehrerer Radioteleskope, ist es zum ersten Mal gelungen, die Spiralform des drehenden Lichts zu messen, das vom Rand eines supermassereichen Schwarzen Lochs entweicht. Die Daten unterstützen frühere Erkenntnisse über das rotierende Magnetfeld des Schwarzen Loch in der Galaxie M 87.

M 87

Computersimulation des Plasmas um das supermassereiche Schwarze Loch im Zentrum der Galaxie M 87. Eine neue Analyse von zirkular polarisiertem (oder spiralförmigem) Licht in EHT-Beobachtungen zeigt, dass in der Nähe des Schwarzen Lochs starke Magnetfelder existieren. Diese Magnetfelder wirken auf die einfallende Materie zurück und tragen dazu bei, dass Materiestrahlen mit Geschwindigkeiten nahe der Lichtgeschwindigkeit nach außen geschleudert werden. Bild: George Wong [Großansicht]

Zum ersten Mal ist es gelungen, die Spiralform des drehenden Lichts zu messen, das vom Rand eines supermassereichen Schwarzen Lochs entweicht. Diese Ergebnisse hat die Event Horizon Telescope (EHT) Kollaboration kürzlich veröffentlicht. Diese sogenannte zirkulare Polarisation ist eine Folge der Rotation der Schwingungsrichtung des elektrischen Feldes in den Radiowellen. Auf seiner Reise bringt das Radiolicht Informationen über die Magnetfeld-Struktur und die Zusammensetzung der energetischen Teilchen nahe dem Schwarzen Loch mit sich. Die neue Arbeit unterstützt frühere Erkenntnisse des EHT bezüglich eines rotierenden Magnetfeldes, das stark genug ist das Schwarze Loch in der Galaxie M 87 zeitweise daran zu hindern, Materie zu "verschlucken".

"Die Untersuchung der zirkularen Polarisation war der letzte Teil unserer umfassenden Analyse der Polarisation um das Schwarzen Loches in M 87 mit den Daten aus dem Jahr 2017. Da die zirkulare Polarisation relativ schwach ist, war es besonders schwierig dieses Signal zu extrahieren", sagt Andrew Chael, Wissenschaftler der Gravity Initiative an der Princeton University, der das kürzlich vorgestellte Projekt koordiniert hat. "Diese neuen Ergebnisse bestätigen unser Bild eines starken Magnetfelds, welches das heiße Gas um das Schwarze Loch durchdringt. Die EHT-Beobachtungen helfen uns, besser zu verstehen, wie Schwarze Löcher Materie aufsaugen und gleichzeitig energiereiche Jets ausstoßen, die weit über die Galaxie hinausreichen können, in der sich das Schwarze Loch befindet."

Im Jahr 2019 erreichte das Event Horizon Telescope einen Meilenstein als es zum ersten Mal ein Bild eines glühenden Rings aus heißem Plasma um das zentrale Schwarze Loch in M 87 zeigte. Im Jahr 2021 veröffentlichten die EHT-Wissenschaftler dann ein weiteres Bild, das die Ausrichtung der elektrischen Felder des Lichts, zeigt also die lineare Polarisation aus dem Plasmaring. Diese lineare Polarisation deutet auf die Existenz geordneter und starker Magnetfelder in der Nähe des Ereignishorizonts des Schwarzen Lochs hin (astronews.com berichtete).

Anzeige

"Darauf aufbauend liefern unsere neuen Messungen der zirkularen Polarisation, die zeigen, wie sich die elektrischen Felder des Lichts spiralförmig drehen, eine noch überzeugendere Bestätigung für die Existenz dieser starken Magnetfelder", sagt Eduardo Ros, Wissenschaftler am Max-Planck-Institut für Radioastronomie (MPIfR). "Das zirkular polarisierte Signal ist etwa 100 Mal schwächer als die unpolarisierte Strahlung, die wir für das erste Bild des Schwarzen Lochs verwendet haben", erklärt Ioannis Myserlis, Astronom am Institut für Radioastronomie im Millimeterbereich (IRAM). "Dieses schwache Signal in den Daten zu finden war, als würde man versuchen, ein Gespräch neben einem Presslufthammer zu verfolgen. Wir mussten unsere Methoden sorgfältig testen, um herauszufinden, worauf wir uns wirklich verlassen konnten."

Um diese genaue Analyse durchführen zu können, entwickelte und testete das Team mehrere neue Methoden, um aus den spärlichen und verrauschten EHT-Messungen ein polarisiertes Bild zu rekonstruieren. "Es war entscheidend, unsere verschiedenen Analysemethoden gegen simulierte Daten und gegeneinander zu testen", sagt Freek Roelofs, Postdoktorand am Center for Astrophysics | Harvard and Smithsonian. In einer ebenfalls parallel veröffentlichten Studie stellte Roelofs fest, dass die Daten einen überraschenden Unterschied zwischen den links- und rechtshändig zirkular polarisierten Anteilen des Lichtes des Rings zeigen. Dieses Ergebnis basiert jedoch auf der (plausiblen) Annahme einer ringförmigen Struktur der Emission – unter weniger stringenten Annahmen über die Helligkeitsverteilung verschwanden diese Unterschiede.

"Zusammen zu arbeiten und herauszufinden, was und was nicht aus den Daten abgeleitet werden kann, hat dieses Projekt unglaublich spannend und interessant gemacht", sagt Roelofs. Das Team führte verschiedene Tests mit den Daten durch, die alle auf die tatsächliche Präsenz zirkular polarisierten Lichtes in der Nähe des Ereignishorizonts hinweisen. Maciek Wielgus, Wissenschaftler am MPIfR, erklärt: "Da die Genauigkeit der EHT-Messungen der zirkularen Polarisation durch die Messempfindlichkeit begrenzt war, konnte unser Team letztlich kein klares Bild von der 'Händigkeit' des zirkular polarisierten Lichtes gewinnen. Stattdessen konnten wir aber feststellen, dass der zirkular polarisierte (oder spiralförmige) Anteil des Lichts nur einen kleinen Teil des gesamten Lichts ausmacht, aus dem sich das Bild des Schwarzen Lochs zusammensetzt."

In einer kürzlich durchgeführten Studie hat das Team des EHT mit einer speziellen Messtechnik verschiedene Hypothesen über die Form und das Verhalten von Plasma- und Magnetfeldern in der Umgebung eines Schwarzen Lochs untersucht. Dabei kamen auch modernste Supercomputer-Simulationen zum Einsatz. Die nun vorliegende Messung der zirkularen Polarisation untermauert frühere Befunde, die auf die Existenz starker Magnetfelder hindeuten. Diese Magnetfelder üben eine beträchtliche Kraft auf die in das Schwarze Loch fallende Materie aus und begünstigen die Bildung robuster Plasmajets, die sich weit vom Zentralbereich der Galaxie M 87 entfernen.

Die kombinierte Analyse von Simulationen und Beobachtungen zeigt eine turbulente und dynamische Umgebung nahe dem Ereignishorizont des Schwarzen Lochs. In dieser Region kommt es zu heftigen Wechselwirkungen zwischen Magnetfeldern, dem heißen Plasma und der Schwerkraft. "Obwohl die EHT-Daten von 2017 nicht empfindlich genug sind, um alle Details in der Struktur der zirkularen Polarisation um das Schwarze Loch zu enthüllen, sind wir optimistisch die momentanen Einschränkungen überwinden zu können", sagt Thomas Krichbaum vom MPIfR, einer der Pioniere von Millimeter-VLBI Messungen. "Unsere laufende Analyse neuerer und besserer EHT-Datensätze verspricht, dass wir dieses Signal noch genauer messen können. Das würde uns Aufschluss darüber geben, ob Materie-Antimaterie-Paare Teil des Plasmas am Ereignishorizont sind und welche Mechanismen ihrer Beschleunigung auf nahezu Lichtgeschwindigkeit zugrunde liegen", schließt er.

Unter den teilnehmenden Teleskopen in der Messung befindet sich auch das vom MPIfR gebaute und betriebene Radioteleskop APEX in Chile. "Die Arbeit an diesen bahnbrechenden Beobachtungen war zweifellos eine große Herausforderung, aber sie hat uns auf die spannenden Perspektiven vorbereitet, die noch vor uns liegen", ergänzt Anton Zensus, Gründungsvorsitzender der EHT-Kooperation und Direktor am MPIfR. Er fügt hinzu: "Das EHT erlebt derzeit eine rasante Expansion mit neuen Teleskopen und verbesserter Technologie an allen Observatorien, die auch auf den Ergebnissen von unserem VLBI-Korrelator in Bonn basieren."

Über die Ergebnisse berichtet das Team in zwei Fachartikeln, die in The Astrophysical Journal Letters erschienen sind.

Forum
Das drehende Licht vom Rand eines Schwarzen Lochs. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Event Horizon Telescope: Magnetfelder am Rand eines Schwarzen Lochs - 25. März 2021
Nordic Optical Telescope: Der verdrillte Jet von M 87 - 6. Juli 2020
Event Horizon Telescope: Der Schatten des Schwarzen Lochs von M87 - 10. April 2019
Links im WWW
The Event Horizon Telescope Collaboration et al. (2023): First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization, ApJL, 957, L20
Roelofs, F. et al (2023): Polarimetric Geometric Modeling for mm-VLBI Observations of Black Holes, ApJL, 957, L21
Max-Planck-Institut für Radioastronomie
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2023/11