Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
KERNPHYSIK
Protonen sind kleiner als lange angenommen
Redaktion / Pressemitteilung der Universität Bonn
astronews.com
8. Februar 2022

Sind Protonen tatsächlich kleiner als noch vor einigen Jahren angenommen? Neue Experimente deuteten darauf hin und ließen manche sogar über eine notwendige Änderung des Standardmodells spekulieren. Nun haben Wissenschaftlerinnen und Wissenschaftler sich die alten Daten noch einmal angesehen und konnten auch daraus einen geringeren Protonenradius ableiten.

Proton

Das Proton (rot) - hat einen Radius von 0,84 Femtometern (fm). In der Abbildung sind auch die drei Quarks dargestellt, aus denen sich das Proton zusammensetzt, sowie die Gluonen, die sie zusammenhalten. Bild: Dr. Yong-Hui Lin / Universität Bonn [Großansicht]

Unser Bürostuhl, die Luft, die wir atmen, die Sterne am Nachthimmel: Sie alle bestehen aus Atomen, die sich wiederum aus Elektronen, Protonen und Neutronen zusammensetzen. Elektronen sind negativ geladen; sie haben nach heutigem Kenntnisstand keine Ausdehnung, sondern sind punktförmig. Bei den positiv geladenen Protonen ist das anders - ihr Radius beträgt aktuellen Messungen zufolge 0,84 Femtometer (ein Femtometer ist ein Billiardstel Meter). Bis vor wenigen Jahren dachte man allerdings noch, sie seien 0,88 Femtometer groß - ein winziger Unterschied, der in der Fachwelt jedoch für erhebliche Furore sorgte. Denn er ließ sich nicht so einfach erklären.

Manche Expertinnen und Experten hielten ihn sogar für einen Hinweis darauf, dass das Standardmodell der Teilchenphysik falsch sei und abgeändert werden müsse. "Unsere Analysen deuten jedoch darauf hin, dass dieser Unterschied zwischen den alten und neuen Messwerten gar nicht existiert", erklärt Prof. Dr. Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. "Stattdessen waren die älteren Werte mit einem systematischen Fehler behaftet, der bislang deutlich unterschätzt wurde."

Um den Radius eines Protons zu bestimmen, kann man es in einem Beschleuniger mit einem Elektronenstrahl beschießen. Wenn ein Elektron auf das Proton stößt, ändern beide ihre Bewegungsrichtung - ähnlich wie bei der Kollision zweier Billardkugeln. In der Physik bezeichnet man diesen Vorgang als elastische Streuung. Je größer das Proton, desto häufiger kommt es zu solchen Kollisionen. Aus Art und Ausmaß der Streuung lässt sich daher seine Ausdehnung berechnen.

Anzeige

Je höher dabei die Geschwindigkeit des Elektronenstrahls, desto genauere Messungen sind möglich. Allerdings steigt damit auch die Gefahr, dass Elektron und Proton beim Zusammenstoß neue Teilchen bilden. "Bei hohen Geschwindigkeiten oder Energien geschieht das immer häufiger", erklärt Meißner. "Die elastischen Streuungs-Ereignisse werden im Gegenzug seltener. Daher hat man für Messungen der Protonengröße bislang nur Beschleunigerdaten verwandt, bei denen die Elektronen eine relativ geringe Energie hatten."

Im Prinzip liefern aber auch Kollisionen, bei denen andere Teilchen entstehen, wichtige Einblicke in die Form des Protons. Das gilt ebenso für ein weiteres Phänomen, das bei hohen Geschwindigkeiten des Elektronenstrahls auftritt - die sogenannte Elektron-Positron Vernichtung. "Wir haben eine theoretische Basis entwickelt, mit der sich auch solche Ereignisse für die Berechnung des Protonenradius nutzen lassen", sagt Prof. Dr. Hans-Werner Hammer von der TU Darmstadt. "Dadurch können wir Daten berücksichtigen, die bislang außen vor bleiben."

Mit dieser Methode haben die Physiker die Messwerte aus älteren, aber auch ganz aktuellen Experimenten neu analysiert – inklusive denen, die bislang einen Wert von 0,88 Femtometern nahelegten. Mit ihrem Verfahren kamen die Forscher jedoch auf 0,84 Femtometer; das ist der Radius, der auch in neuen Messungen gefunden wurde, die auf einer ganz anderen Methodik basieren.

Das Proton scheint also tatsächlich rund fünf Prozent kleiner zu sein, als in den 1990er und 2000er Jahren angenommen wurde. Gleichzeitig erlaubt das Verfahren der Forscher auch neue Einblicke in die Feinstruktur von Protonen und ihrer ungeladenen Geschwister, der Neutronen. Es hilft somit dabei, den Aufbau der Welt um uns herum etwas besser zu verstehen - des Stuhls, der Luft, aber auch der Sterne am Nachthimmel.

Über ihre Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Physical Review Letters erschienen ist.

Forum
Protonen sind kleiner als lange angenommen. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Teilchenphysik: Das Proton schrumpft erneut - 11. Oktober 2017
Teilchenphysik: Das Deuteron ist kleiner als gedacht - 12. August 2016
Links im WWW
Lin, Y.-H., Hammer, H.-W. & Meißner, U.-G. (2022): New Insights into the Nucleon's Electromagnetic Structure, Phys. Rev. Lett., 128, 052002
Universität Bonn
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2022/02