Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Sonnensystem : Artikel [ Druckansicht ]

 
SONNENSYSTEM
Mehr Staub aus Supernovae
Redaktion / idw / Pressemitteilung des Max-Planck-Instituts für Chemie
astronews.com
12. Juni 2019

Wir alle bestehen aus Sternenstaub - dieser Sachverhalt ist der Wissenschaft schon seit einiger Zeit bekannt. Neue Analysen von Meteoriten ergaben aber nun, dass ein sehr viel größerer Anteil dieses Sternenstaubs aus Supernova-Explosionen stammt. Als unser Sonnensystem aus einer Gas- und Staubwolke entstand, dürfte der Supernova-Staub darin rund ein Prozent ausgemacht haben.

M1

Der bekannte Krebsnebel ist der Überrest einer Supernova, die am 4. Juli 1054 zu beobachten war.  Bild: NASA, ESA und Allison Loll/Jeff Hester (Arizona State University)  [Großansicht]

Für Wissenschaftler sind Meteoriten wertvolle Zeugen aus der Frühzeit unseres Sonnensystems. Sie bestehen aus den ältesten Bausteinen unseres Planetensystems, enthalten aber auch Einschlüsse winziger Sternenstaubkörnchen, die älter sind als unsere Sonne. Die häufigste Art von Sternenstaub sind Silikatkörner von wenigen hundert Nanometern Größe. Der in den Meteoriten mitreisende Sternenstaub stammt zum Großteil aus den Resten von Roten Riesensternen. Ein kleinerer, aber signifikanter Teil des Sternenstaubs stammt aus Supernova-Explosionen.

Wissenschaftler des Max-Planck-Instituts für Chemie konnten jetzt zeigen, dass der Anteil des Silikat-Sternenstaubs, der aus Supernovae stammt, in den Meteoriten etwa doppelt so hoch ist, als bisher angenommen. Sie schätzen ihn auf 25 bis 30 Prozent. Daraus leiten sie ab, dass die Staub- und Gaswolke, aus der unser Sonnensystem vor 4,6 Milliarden Jahren entstand, etwa ein Prozent "echten" Supernovastaub enthielt.

"Wir konnten mit unserer Studie zeigen, dass ein nicht zu vernachlässigender Anteil der in Meteoriten gefundenen präsolaren Sternenstaubkörnchen, von denen man annahm, dass sie von Roten Riesensternen stammen, stattdessen in Supernova-Explosionen entstanden sind", sagt Physiker Dr. Jan Leitner vom Max-Planck-Institut für Chemie. Der Nachweis gelang den Mainzer Wissenschaftlern durch die präzise Bestimmung der Sauerstoff- und Magnesium-Isotopenverhältnisse in Silikat-Sternenstaubkörnern.

Es zeigte sich, dass die Magnesium-Isotopenzusammensetzungen in einigen der untersuchten Silikat-Sternenstaubkörner durch die Nova-Modelle erklärt werden können, nicht jedoch deren Sauerstoff-Isotopenverhältnisse. Letztere können zwar durch Modelle für Rote Riesensterne erklärt werden, nicht aber die gefundenen Magnesium-Isotopenzusammensetzungen. Einzig neuere Supernova-Modelle treffen Aussagen, die sowohl die gemessenen Isotopenzusammensetzungen von Magnesium als auch die von Sauerstoff sehr gut erklären.

Anzeige

Die Forscher erklären dieses Phänomen damit, dass die Kernfusionsprozesse, die bei Supernovae, Novae und Roten Riesen ablaufen, jeweils unter anderen Bedingungen stattfinden. Dadurch entsteht für eine Vielzahl von Elementen eine ganz charakteristische Isotopensignatur, die in den Silikat-Körnern einen spezifischen "Fingerabdruck" hinterlässt. Die ursprüngliche Annahme, dass der weitaus größte Teil des Sternenstaubs aus Roten Riesen stammt, beruht auf Analysen der Verhältnisse der Sauerstoffisotope in den Silikatkörnern, die sich auf eine ganz charakteristische Art und Weise von denjenigen unserer Sonne unterscheiden.

Die untersuchten Sternenstaubkörner wurden in verschiedenen Meteoriten entdeckt, die man in der Antarktis und der Sahara fand. Im Rahmen einer vorhergehenden Studie hatten die Max-Planck-Forscher die Sternenstaubkörner anhand ihrer anomalen Sauerstoff-Isotopenzusammensetzung identifiziert und daraus die Häufigkeit von Sternenstaub in den Meteoriten bestimmt.

Der Nachweis gelang den Max-Planck-Forschern mit Hilfe eines speziellen Massenspektrometers, der sogenannten NanoSIMS. Mit diesem Gerät kann man die Isotopenzusammensetzung von Materialien auf einer Größenskala von 50-100 Nanometern ermitteln. Die präzisen Messungen der Magnesiumisotope wurden erst durch den Einbau einer neuartigen Ionenquelle vor anderthalb Jahren möglich. Zuvor stand nur ein Ionenstrahl zur Verfügung, der größer war als die zu untersuchenden Sternenstaubkörnchen, weswegen die Messergebnisse durch das umgebende Material verfälscht wurden.

Über ihre Ergebnisse berichten die Forscher in der Fachzeitschrift Nature Astronomy

Forum
Mehr Staub aus Supernovae im Sonnensystem. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Sonnensystem: Größerer Anteil an Sternenstaub - 15. August 2017
Meteoriten: Sternenstaub aus einer Supernova - 19. Januar 2011
Meteoriten: Die Keimzellen der Planeten - 4. April 2011
Astrobiologie: Kam die Linkshändigkeit aus dem All? - 18. März 2009
Meteoriten: Lebensbausteine aus dem All - 17. Juni 2008
Meteoriten: Die ältesten Gesteine im Sonnensystem - 9. Februar 2006
Meteoriten: Lebensbausteine aus Sternenstaub - 24. Juni 2004
Links im WWW
Max-Planck-Institut für Chemie
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2019/06