Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
KILONOVAE
Kilonova von 2017 hatte Form einer Kugel
Redaktion / idw / Pressemitteilung des GSI Helmholtzzentrums für Schwerionenforschung GmbH
astronews.com
21. Februar 2023

Wenn Neutronensterne kollidieren, entsteht eine Explosion, die – anders als bis vor kurzem angenommen – die Form einer nahezu perfekten Kugel hat. Wie dies möglich ist, ist zwar immer noch ein Rätsel, aber die Entdeckung könnte bei Entfernungsmessungen im All helfen. Bei solchen Kilonovae entstehen zudem wichtige schwere Elemente.

Kilonova

Künstlerische Darstellung einer Kilonova. Bild: R. Dienel, Carnegie Institution for Science  [Großansicht]

Kilonovae sind gigantische Explosionen, die entstehen, wenn zwei Neutronensterne einander umkreisen und schließlich miteinander kollidieren. Die dabei auftretenden extremen physikalischen Bedingungen sind für die Entstehung schwerer Elemente verantwortlich, beispielsweise die Atome im Goldschmuck und das Jod in unseren Körpern. Des Weiteren erzeugen Kilonovae Licht, so dass man diese Explosionen auch noch in kosmischen Entfernungen mit Teleskopen beobachten kann.

Aber es gibt noch viel, was die Wissenschaft über dieses gewaltige Phänomen nicht weiß. Als 2017 in 140 Millionen Lichtjahren Entfernung eine Kilonova entdeckt wurde, konnten zum ersten Mal detaillierte Daten gesammelt werden. Wissenschaftlerinnen und Wissenschaftler auf der ganzen Welt sind immer noch dabei, die Daten dieser kolossalen Explosion zu interpretieren, darunter Albert Sneppen und Professor Darach Watson von der Universität Kopenhagen, sowie Privatdozent Andreas Bauswein und Dr. Oliver Just aus der Forschungsabteilung Theorie des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt.

Eine der offenen Frage betrifft die geometrische Form der Kilonova, also die Ausbreitungsgeschwindigkeit der Explosion in verschiedenen Richtungen. Dieses Problems hat sich das internationale Forschungsteam rund um Sneppen und Watson angenommen. Die Forschenden haben die Geschwindigkeit der Explosion in verschiedenen Richtungen analysiert: entlang der Sichtlinie – also die Geschwindigkeit des Materials, das sich in Richtung unserer Erde bewegt – und senkrecht dazu.

Anzeige

Entlang der Sichtlinie machen sich die Forschenden den Dopplereffekt zunutze, den man vom herannahenden Feuerwehrauto kennt. Wie sich die Tonhöhe der Sirene mit hoher Geschwindigkeit verändert, so kann man auch aus den Eigenschaften des Lichts der Kilonova-Explosion, genauer aus den sogenannten Spektrallinien, die Geschwindigkeit ablesen. Die Geschwindigkeit senkrecht zur Beobachtungslinie ergibt sich aus der Größe der strahlenden Fläche, die sich aus Helligkeit und Farbe der Kilonova ableiten lässt.

Die Überraschung dieser Analyse: Die Explosion breitet sich in alle Richtungen gleich schnell aus. Die Kilonova aus dem Jahr 2017 hat die Form einer Kugel. "Man hat zwei superkompakte Sterne, die sich 100 Mal pro Sekunde umkreisen, bevor sie kollabieren. Unsere Intuition und die meisten der bisherigen Modelle besagen, dass die bei der Kollision entstehende Explosionswolke aufgrund des enormen Drehimpulses im System eine eher asymmetrische Form haben muss", sagt Albert Sneppen, Doktorand am Niels-Bohr-Institut in Kopenhagen. Wie die Kilonova kugelförmig sein kann, ist ein echtes Rätsel.

Das GSI-Team hat insbesondere Simulationen der Explosion zum Test verschiedener Szenarien und theoretische Interpretationen zu der Studie beigetragen. Die Forschenden konnten zeigen, dass es selbst unter recht spekulativen Annahmen keinen Mechanismus gibt, der zwangsläufig zu einer sphärischen Explosion führen muss, wenngleich einige Simulationen recht gut zu der Beobachtung passen. "Eine Möglichkeit könnte daher auch sein, dass es sich um eine pure Koinzidenz handelt. Spannend ist die Beobachtung auf alle Fälle, denn sie hilft Modelle der Kilonova-Explosion besser zu verstehen und damit auch Details der Elementenstehung in diesen Ereignissen", sagt Just. Und Bauswein ergänzt: "Mit Messungen weiterer Neutronensternverschmelzungen wird man dieses Ergebnis sicher besser beurteilen können. Wir erwarten, dass mit neuen, jetzt zur Verfügung stehenden Observatorien in den kommenden Jahren viele weitere Kilonovae entdecken werden."

Die Form der Explosion ist auch aus einem ganz anderen Grund interessant: "in der Astrophysik wird viel darüber diskutiert, wie schnell das Universum expandiert. Die Geschwindigkeit sagt uns unter anderem, wie alt das Universum ist. Und die beiden hauptsächlich benutzten Methoden, die es gibt, um dies zu messen, weichen um etwa eine Milliarde Jahre voneinander ab. Hier haben wir vielleicht eine dritte Methode, die die anderen Messungen ergänzt und mit ihnen verglichen werden kann", sagt Sneppen.

Die sogenannte "kosmische Entfernungsleiter" ist die Methode, die heute verwendet wird, um zu messen, wie schnell das Universum wächst. Dazu wird der Abstand zwischen verschiedenen Objekten im Universum berechnet, die als Sprossen auf der Leiter fungieren. "Wenn sie hell und meist kugelförmig sind, können wir die Kilonovae als eine neue Möglichkeit nutzen, um die Entfernung unabhängig zu messen – eine neue Art von kosmischem Lineal", sagt Watson und fährt fort: "Die Kenntnis der Form ist hier entscheidend, denn wenn ein Objekt nicht kugelförmig ist, strahlt es je nach Blickwinkel anders. Eine kugelförmige Explosion ermöglicht eine viel genauere Messung."

Über ihre Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Nature erschienen ist.

Forum
Kilonova von 2017 hatte Form einer Kugel. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Chandra: Das Nachglühen einer Kilonova? - 3. März 2022
Gravitationswellen: Wenn Neutronensterne verschmelzen - 16. Oktober 2017
Gravitationswellen: Drei Detektoren belauschten ein Ereignis - 28. September 2017
Links im WWW
Sneppen, A. et al. (2023): Spherical symmetry in the kilonova AT2017gfo/GW170817,  Nature, 614, 436 (arXiv.org-Preprint)
GSI Helmholtzzentrum für Schwerionenforschung GmbH
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2023/02