Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Raumfahrt : Artikel [ Druckansicht ]

 
TRIEBWERKE
Treibstoff aus der Restatmosphäre
Redaktion / idw / Pressemitteilung der Universität Stuttgart
astronews.com
8. Mai 2020

Aus einem niedrigen Orbit lassen sich interessante Erdbeobachtungen durchführen. Leider gibt es in diesen Höhen noch immer eine Restatmosphäre, die die Satelliten abbremst. Um dies zu verhindern und langlebigere Satelliten zu ermöglichen, hat man an der Universität Stuttgart ein neues Triebwerk entwickelt, das den Luftwiderstand ausgleicht und die Atmosphäre als Treibstoff nutzt.

Triebwerk

Plasmastrom des Induktiven Plasmatriebwerks im Betrieb mit Stickstoff. Foto: Universität Stuttgart/IRS  [Großansicht]

Erdbeobachtungssatelliten für niedrige Flughöhen, kleiner, leichter und billiger als herkömmliche Modelle - das sind die Ziele des EU- Projekts "DISCOVERER", an dem neun Partner aus Europa und den USA beteiligt sind. Am Institut für Raumfahrtsysteme (IRS) der Universität Stuttgart wurde nun erstmals ein neuartiges induktives Plasmatriebwerk gezündet, das eines der wesentlichen Probleme der Mission lösen soll: Es eliminiert den Luftwiderstand im unteren Orbit und erhöht dadurch die Lebensdauer der Satelliten. Das System basiert auf Heliconwellen und ist mit einer Antenne aus dem medizinischen Bereich ausgestattet.

Satellitenmissionen im sogenannten "Very Low Earth Orbit", also in geringen Höhen bis zu 400 Kilometern, ermöglichen neuartige Erdbeobachtungen wie zum Beispiel die dauerhafte Vermessung des Erdschwerefeldes mit kleinen und preisgünstigen Satelliten. Allerdings herrscht in diesen Höhen durch die Restatmosphäre noch ein relativ hoher Luftwiderstand. Dieser macht einen Satelliten langsamer und langsamer, wodurch ihn die Schwerkraft näher zur Erde ziehen kann, bis er in die Erdatmosphäre eintritt und verglüht. Demnach wäre die Mission, je nach Höhe, schon innerhalb eines Zeitraums von Tagen bis wenigen Monaten beendet.

Um das Lebensdauer-Problem zu lösen und neuartige beziehungsweise signifikant verbesserte Möglichkeiten der Erdbeobachtung zu eröffnen, entwickelt eine Arbeitsgruppe am IRS der Universität Stuttgart bereits seit 2014 einen "atmosphärenatmenden" elektrischen Raumfahrtantrieb, der den Luftwiderstand kompensiert. Das System nimmt die bremsenden Atmosphärenpartikel aus der Restatmosphäre um den Satelliten auf und nutzt diese als Treibstoff. Dies hat den Vorteil, dass der Satellit keinen Treibstofftank mit sich führen muss, er versorgt sich aus den Gaspartikeln der Hochatmosphäre und photovoltaischer Elektrizität.

Anzeige

Dabei führt die elektrische Energie den Treibstoff in Plasma über, das beschleunigt wird, um Schub zu generieren. Bisherige Systeme benötigten hierfür Elektroden beziehungsweise Gitter, die aber empfindlich auf den aggressiven Sauerstoff reagieren. Andere arbeiten mit einem ebenso empfindlichen Neutralisator, der verhindert, dass der Satellit sich elektrisch auflädt und die Ionen dadurch wieder zurückgezogen werden, was den Schub zunichtemachen würde.

Das IRS der Universität Stuttgart entwickelte nun erstmals ein atmosphärenatmendes elektrisches Triebwerk (ABEP), das ohne diese "Hilfsmittel" auskommt. Das ABEP-System besteht aus einem Massenkollektor sowie einem Radiofrequenz-Antrieb, dem Induktiven Plasmatriebwerk (IPT). Dieses basiert auf sogenannten Heliconwellen, also niederfrequenzelektromagnetischen Wellen. Bei diesem fortschrittlichen physikalischen Prinzip wird das Plasma durch eine Antenne gezündet und beschleunigt, um Schub zu generieren.

Der IPT des IRS nutzt dabei erstmals eine sogenannte zylindrische Birdcage-Antenne, die ihren Ursprung in der Magnetresonanztomographie hat. Diese stellt elektromagnetische Mechanismen zur Verfügung, die sowohl die Ionen als auch die Elektronen simultan beschleunigen. Dadurch weist die Antenne einen besonders hohen Wirkungsgrad auf, was der Plasmajet in ersten Tests bewiesen hat.

Die Inbetriebnahme des induktiven Plasmatriebwerks ist ein Durchbruch, der gleich mehrere Vorteile mit sich bringt: Das Triebwerk kann mit variablen Treibstoff-Massenströmen und -Kompositionen umgehen und wird damit dem Umstand gerecht, dass in der Atmosphäre keine einheitlichen Bedingungen herrschen. Zudem kann es auch mit dem aggressivem Treibstoff der Thermosphäre, zum Beispiel mit atomarem Sauerstoff, problemlos betrieben werden. Ionen und Elektronen werden gemeinsam mit hoher Geschwindigkeit zur Schub-Generierung beschleunigt; ein Neutralisator ist daher nicht erforderlich.

Forum
Treibstoff aus der Restatmosphäre. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Satelliten: Restatmosphäre als Treibstoff - 13. April 2017
Links im WWW
Universität Stuttgart
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2020/05