Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Sonnensystem : Artikel [ Druckansicht ]

 
MARS
Lebenserhaltungssysteme mit Cyanobakterien
Redaktion / Pressemitteilung des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) an der Universität Bremen
astronews.com
16. Februar 2021

Eine astronautische Mars-Mission würde auch ein ausgefeiltes Konzept für die Versorgung der Astronautinnen und Astronauten erfordern. Ein Forschungsteam hat nun einen möglichen Weg aufgezeigt: Cyanobakterien vermehren sich auch unter Mars-Bedingungen hervorragend und könnten damit eine Basis für biologische Lebenserhaltungssysteme darstellen.

Behälter

Behälter mit marsähnlicher Atmosphäre, in dem als Teil von Atmos Cyanobaktierien wachsen. Foto: ZARM / Universität Bremen  [Großansicht]

Zum Mars fliegt ein Raumfahrzeug je nach Planetenkonstellation mindestens neun Monate. Neben der langen Anreisezeit machen es zudem die hohen Sicherheitsaspekte und Transportkosten schwierig, Astronautinnen und Astronauten auf dem Mars kontinuierlich mit lebenserhaltenden Verbrauchsmaterialien zu versorgen. Für eine langfristige Explorationsmission müssen also die Ressourcen auf dem Mars produziert und recycelt werden.

Eine Lösung dafür wären biologische Systeme, genauer bioregenerative Lebenserhaltungssysteme (BLSS). Mit einem BLSS auf Basis von Cyanobakterien könnte die Crew auf lokale Ressourcen zurückgreifen und damit die Abhängigkeit von der Erde stark reduzieren, so Humboldt-Stipendiat Cyprien Verseux vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) an der Universität Bremen. Bekannt sind Cyanobakterien vor allem als Blaualgen, die im Sommer unsere Seen befallen.

Die Bakterien, die zu den ältesten Lebewesen unserer Erde gehören, passen sich vielen Extrembedingungen gut an und wachsen, indem sie Stickstoff und Kohlenstoff aus der Luft aufnehmen und dem Wasser durch z. B. Landwirtschaft zugeführte Nährstoffe entziehen. Wenn im Sommer die Rahmenbedingungen für die fälschlicherweise als Algen bezeichneten Bakterien ideal sind, vermehren sich die Bakterien. Wenn die Konzentration zu hoch ist, sind einige Arten für den Menschen ungesund, da sie bei Kontakt mit der Haut Allergien auslösen können.

Anzeige

Auf dem Mars kommt allerdings ihr volles Potential zum Tragen, da sie durch Photosynthese Sauerstoff produzieren – ein für den Menschen überlebenswichtiges und außerhalb der Erdatmosphäre rares Gut. Diese Fähigkeit findet man zwar bei fast allen Pflanzen, aber Cyanobakterien können darüber hinaus auf Basis der Nährstoffe wachsen, die auf dem Mars vorhanden sind. Gespeist mit Marsgestein und -atmosphäre eignen sie sich als die Grundlage für ein cyanobakterien-basiertes Lebenserhaltungssystem (CyBLiSS).

Um sich Cyanobakterien auf anderen Planeten zunutze zu machen, wird zunächst im Labor erforscht, wie sie auf unterschiedliche Umgebungsbedingungen reagieren: Es muss ein Kompromiss gefunden werden zwischen marsähnlichen Bedingungen (die den Bau und Betrieb eines Kultivierungssystems erleichtern würden) und Bedingungen, die das Wachstum von Cyanobakterien am besten unterstützen.

Atmos (Atmosphere Tester for Mars-bound Organic Systems) ist ein atmosphärengesteuerter Unterdruck-Photobioreaktor, der im Laboratory for Applied Microbiology (LASM) am ZARM entwickelt wurde. Mithilfe von Atmos arbeitete das Forschungsteam in den letzten Monaten daran, die optimalen atmosphärischen Bedingungen für das Wachstum der Cyanobakterien der Gattung Anabaena sp zu bestimmen und dabei zugleich die technische Umsetzbarkeit auf dem Mars zu berücksichtigen.

Die Erdatmosphäre setzt sich aus Stickstoff (78 %) und Sauerstoff (21 %) sowie jeweils einem kleinen Anteil an Argon und Kohlenstoff zusammen. Die Marsatmosphäre hingegen besteht zwar aus den gleichen Stoffen, setzt sich aber nahezu gegensätzlich zusammen, da sie hauptsächlich aus Kohlenstoff (95 %) und nur kleinen Anteilen von Stickstoff und Argon besteht, sowie nur Spuren von Sauerstoff enthält. In Atmos wurden nun in verschiedenen Durchläufen die Anteile der Gase sowie der Umgebungsdruck verändert und die entsprechende Entwicklung der Bakterien beobachtet. Ziel der Untersuchungen war es, sich so weit wie möglich der Marsatmosphäre anzunähern, während gleichzeitig noch ein starkes Wachstum der Cyanobakterien erhalten bleibt.

Als Ergebnis ihrer Forschung der letzten Monate erhielt das Forschungsteam vielversprechende Antworten: Hauptsächlich konnten sie nachweisen, dass sich die Cyanobakterien hervorragend vermehrten, wenn sie einer Atmosphäre ausgesetzt sind, die der Marsatmosphäre nicht unähnlich ist – und zwar sowohl im Hinblick auf die Gase (4 % Kohlenstoff; 96 % Stickstoff) als auch dem atmosphärischen Druck (100 hPa). Das erreichte Wachstum hat die Erwartungen sogar deutlich übertroffen. Dies ist insofern vielversprechend, als dass es die technisch-logistische Umsetzung eines auf der Marsoberfläche befindlichen CyBLiSS erheblich erleichtert.

Zum einen, da dann der Druckunterschied zwischen Innen- und Außenseite des Photobioreaktors nur gering ist und somit weniger hohe Ansprüche an die Statik der Konstruktion gestellt werden. Zum anderen, weil es möglich wäre, die benötigte Gasphase mit minimaler Verarbeitung aus der lokalen Atmosphäre zu erzeugen. Sonstige fehlende Nährstoffe für das Wachstum der Bakterien können ebenfalls vor Ort aus Marsgeröll (Regolith) gewonnen werden: Das Team zeigte, dass die Cyanobakterien in der modifizierten Atmosphäre in Wasser auf einem simulierten Marsboden ohne zusätzliche Nährstoffe wachsen konnten.

Als weiteres Forschungsergebnis haben die Untersuchungen der entstandenen Biomasse gezeigt, dass diese als Substrat für nachfolgende Module von Lebenserhaltungssysteme geeignet ist, um auf dem Mars weitere Ressourcen zu generieren.

Das Forschungsteam vom ZARM freut sich darüber, dass die atmosphärischen Bedingungen, die die technische und logistische Machbarkeit von Cyanobakterien-Kultursystemen auf dem Mars verbessern, die von der Biologie diktierten Anforderungen erfüllen können. Damit rückt die Umsetzung eines CyBLiSS weiter ins Zentrum der potentiellen Mars-Lebenserhaltungssysteme bei zukünftigen Mars-Missionen.

Mit diesen ersten Ergebnissen beginnt die Arbeit im LASM allerdings erst so richtig. In den nächsten Monaten werden Verseux und sein Team das CyBLiSS-Design verfeinern, um sowohl die Fähigkeiten, Cyanobakterien auf dem Mars zu züchten, als auch ihre Verwendung zur Produktion von Nährstoffen für biologische Organismen in nachfolgenden BLSS-Modulen zu verbessern.

Über ihre Studie berichtete das Team in einem Fachartikel, der jetzt in der Zeitschrift Frontiers Microbiology erschienen ist.

Forum
Lebenserhaltungssysteme mit Cyanobakterien. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Astrobiologie: Mit Blaualgen in die Weiten des Alls - 18. November 2019
Mission Mars, die astronews.com-Berichterstattung über die Erforschung des roten Planeten
Links im WWW
Verseux, C. et al. (2021): A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars, Front. Microbiol., 16. Februar 2021
Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) an der Universität Bremen
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2021/02