Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel

 
KOSMOCHEMIE
Neues Fenster ins Weltall
Redaktion
astronews.com
1. März 2001

Die Mainzer Wissenschaftler haben lange drauf gewartet, doch jetzt ist es soweit: Seit Anfang Februar ziert eine kostbare Nanosims-Ionenmikrosonde das eigens für sie neu eingerichtete Laboratorium in der Abteilung Kosmochemie des Max-Planck-Instituts für Chemie in Mainz. Durch die Analyse von interstellaren Staubkörner mit dem neuen Gerät erhoffen sich die Forscher neue Erkenntnisse über die Entwicklung unseres Sonnensystems und der Milchstraße.

Siliziumkarbid
Rasterelektronenmikroskopaufnahme eines Siliziumkarbidkorns aus dem Murchison-Meteoriten. Dieses Relikt eines fernen Sterns hat einen Durchmesser von weniger als einem Mikrometer und ist mehr als 4,57 Milliarden Jahre alt. Foto: idw/Max-Planck-Instuitut für Chemie
 Das weltweit zweite Gerät dieser Art ist ein Sekundärionenmassenspektrometer (SIMS) der französischen Firma Cameca, die bei der Festlegung der Spezifikationen und Geräteeigenschaften sowie dem Design und den abschließenden Testmessungen eng mit dem Mainzer Max-Planck-Institut und dem Laboratory for Space Sciences an der Washington University in St. Louis zusammengearbeitet hat. Die Amerikaner erhielten vor kurzem das zweite Gerät dieser Art. 

"Mit der Hilfe der Nanosims-Ionenmikrosonde können wir nun zum ersten Mal Meteoritenmaterie und interstellare Staubpartikel im Größenbereich von weniger als 100 Nanometern (Millionstel eines Millimeters) untersuchen und hoffen damit viele offene Fragen in der Kosmochemie und Astrophysik beantworten zu können", erläutert Dr. Peter Hoppe, Leiter der SIMS-Arbeitsgruppe. Bei der Sekundärionenmassenspektrometrie wird die feste Probe mit einem Primärionenstrahl, z.B. mit Cäsium- oder Sauerstoffionen, beschossen. Die dabei erzeugten Sekundärionen werden massenspektrometrisch analysiert, wobei ein dreidimensionales Bild der Element- und Isotopenzusammensetzungen einer Probe gewonnen wird. 

Die SIMS-Methode findet eine breite Anwendung in der Kosmochemie, Geochemie und Geologie. In den letzten Jahren wurden insbesondere präsolare Körner, die älter sind als das Sonnensystem selbst und sich aus von Sternen weggeschleudertem Staub gebildet haben, untersucht. Die Isotopenanalysen an präsolaren Staubkörnern, die in primitiven Meteoriten gefunden wurden, liefern Aussagen über die Entwicklung von Sternen und die Elementbildung durch kernphysikalische Prozesse im Innern der Sonnen, das Kornwachstum in Sternatmosphären und die galaktische chemische Evolution.

Die Messungen mit bisherigen Ionenmikrosonden waren auf Partikel mit Durchmessern größer als 0,5 Mikrometer (Tausendstel eines Millimeters) beschränkt und somit auf vergleichsweise große, nicht repräsentative Körner: Die beobachteten Durchmesser präsolarer Mineralien - wie z.B. Diamant oder Siliziumkarbid - variieren nämlich zwischen einigen Nanometern und einigen Mikrometern. Die neue Sonde ermöglicht eine räumliche Auflösung bis zu 30 Nanometer bei einer hohen Nachweisempfindlichkeit der Sekundärionen. Es können dabei simultan bis zu sechs Isotope gemessen werden. "Damit wird nicht nur ein repräsentativeres Bild der Isotopenzusammensetzung vieler präsolarer Mineralphasen gewonnen", erklärt Dr. Hoppe. "Wir werden gezielt nach kleinen präsolaren Staubkörnern suchen, um damit eventuell bis heute nicht nachweisbare präsolare Mineralphasen, wie z.B. Silikate, zu finden. Die Isotopenmessungen wollen wir auch auf neue astrophysikalisch relevante Elemente - z.B. Elemente der Eisengruppe - ausdehnen."

Mit der neuen Sonde sind eine Vielzahl weiterer Messungen in der Abteilung Kosmochemie geplant. So sollen die Kometenmaterie - wahrscheinlich das ursprünglichste Material in unserem Sonnensystem und daher besonders reich an präsolaren Staubkörnern - und auch heutiger interstellarer Staub untersucht werden. Ein Vergleich von heutigem interstellarem Staub mit solchem aus Meteoriten und Kometen, der vor der Bildung des Sonnensystems entstanden ist, kann wichtige Erkenntnisse über die galaktische chemische Evolution liefern. Die neue Sonde könnte zudem dazu beitragen, eine verlässliche Altersbestimmung an direkt gesammeltem Marsgestein zu ermöglichen.

In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://astronews.com:443/news/artikel/2001/03