Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ASTROCHEMIE
Wie organische Moleküle im All entstehen
Redaktion / Pressemitteilung des Max-Planck-Instituts für extraterrestrische Physik
astronews.com
10. April 2014

Seit April 2014 gibt es am Max-Planck-Institut für extraterrestrische Physik eine neue Forschergruppe, die sich speziell mit interstellaren Molekülen befasst. Im "Zentrum für astrochemische Studien" wollen Theoretiker, Beobachter und Laborwissenschaftler gemeinsam versuchen, die Entstehung von organischen Molekülen im Weltraum zu enträtseln.

Lynds 1544

Beobachtung einer eindeutigen Signatur von Wasser im prästellaren Kern L1544 im Sternbild Stier. Bild: ESA / Herschel /SPIRE / HIFI / Caselli et al.

Warum sind wir hier? Dies ist wahrscheinlich eine der faszinierendsten Fragen nicht nur in der Astrophysik. Im Laufe der letzten Jahrzehnte haben Astronomen einige Fortschritte dabei gemacht, zumindest bestimmte Aspekte der Entstehung von Planeten und Sternen, wie unserer Sonne, besser zu verstehen: Sterne und Planeten entstehen aus einer Wolke aus Gas und Staub. Diese verdichtet sich, ein Protostern und eine protoplanetare Scheibe bilden sich und schließlich wird ein Planetensystem geboren, das sogar einen Planet in der sogenannten habitablen Zone einschließen könnte, in der flüssiges Wasser existieren kann.

"Mit den IRAM-Teleskopen, dem Herschel Weltraumobservatorium, ALMA oder anderen Teleskopen gibt es inzwischen sehr beeindruckende Beobachtungen von Staubwolken und Sternentstehungsregionen in unserer Milchstraße, die uns viel sowohl über die frühen als auch die späten Stadien der Sternentstehung verraten", erklärt Paola Caselli, Direktorin am Max-Planck-Institut für extraterrestrische Physik (MPE). "Darüber hinaus haben wir anspruchsvolle theoretische Modelle für die physikalischen Prozesse und die dynamischen Vorgänge in den Wolken, sowie Labormessungen von Molekülen, die uns als Beobachtungswerkzeug dienen und die gleichzeitig die Bausteine des Lebens darstellen. Unser Ziel ist es, dies alles an einem Ort zusammenzubringen: Theorie, Beobachtung und Labor. Die jeweiligen Experten in jedem Feld können voneinander lernen und alle haben das gemeinsame Ziel besser zu verstehen, wie Sternsysteme entstehen und wie sich die chemische Komplexität während dieses Prozesses der Stern- und Planetenentstehung entwickelt."

Vor der Geburt eines Sterns sind die Molekülwolken sehr kalt; sie haben eine Temperatur von nur wenigen Grad über dem absoluten Nullpunkt. Deshalb kann man sie nicht im optischen Licht beobachten - sie sind dunkel. Doch selbst bei diesen niedrigen Temperaturen rotieren die Moleküle und emittieren dabei Photonen geringer Energie bei Radiowellenlängen. Damit können die Astronomen durch Beobachtungen bei niedrigen Energien Informationen über die Anfangsbedingungen erhalten, unter denen sich Sterne und Planeten bilden.

Werbung

Gleichzeitig können sie untersuchen, wie sich diese interstellaren (größtenteils organischen) Moleküle bilden und wie sie zerstört werden. Theoretische Modelle werden entwickelt, um die Evolution von Staubteilchen und einfachen Molekülen unter dem Einfluss der Schwerkraft und unter Berücksichtigung von Magnetfeldern und Turbulenz nachzuverfolgen. Die Herausforderung für die Astronomen liegt dabei darin, das richtige Molekül für die Beobachtung zu finden.

"Dank der Astrochemie können wir die passenden Moleküle finden und sie als einzigartige Werkzeuge einsetzen, um die dynamische Entwicklung der interstellaren Materie zu untersuchen: von dünnen Wolken, über Sterne und Planeten bis hin zu Festkörpern wie Kometen und Meteoriten. Einige der interstellaren Moleküle sind gut bekannt, viele müssen wir aber erst noch genauer erforschen, da sie auf der Erde nicht so einfach produziert werden", führt Caselli aus. "Deshalb brauchen wir also auch ein Laborteam, das diese noch unbekannten interstellaren Moleküle herstellen und untersuchen kann. Damit können deren Spektren in Beobachtungen identifiziert und die astrochemischen und astrophysikalischen Theorien besser eingeschränkt werden."

Das neue "Zentrum für astrochemische Studien am MPE" oder CAS@MPE wird daher Theoretiker, Beobachter und Laborwissenschaftler an einem Ort zusammenbringen, um die Moleküle und Molekülwolken zu untersuchen, die die Geburtsorte von Sternsystemen wie dem unseren sind.

Eine zusätzliche Komplikation stellt der Staub dar. Interstellare Staubkörner sind riesig im Vergleich zu den Molekülen, auch wenn sie für uns sehr klein scheinen (etwa 1000-mal kleiner als die durchschnittliche Dicke eines menschlichen Haares). Und die Moleküle reichen von einfachen, aus ein paar Atomen bestehenden Verbindungen wie etwa Wasser bis hin zu komplexen Molekülen, wie Methanol, Glykolaldehyd (der einfachste Zucker) oder Amino-Acetonitril (ein Vorläufer von Glycin, der einfachsten Aminosäure). Derartige präbiotische Moleküle hat man im Innern von Kometen und Meteoriten in unserem Sonnensystem gefunden - es bleibt aber die Frage, woher sie stammen.

Moleküle können sich sowohl im interstellaren Gas bilden und sich dann auf der Oberfläche der Staubkörnchen anlagern oder sich direkt auf der Stauboberfläche bilden und dann verdampfen und in die Gasphase zurückkehren. Im Endeffekt erhalten die Staubteilchen in kalten Regionen im All aufgrund dieser Wechselwirkungen eine Eisschicht, die hauptsächlich aus Wassereis besteht, gemischt mit einfachen organischen Molekülen.

Dieser Eismantel ändert sowohl das Verhalten des Staubes (so bleiben Staubteilchen beispielsweise leichter aneinander haften - der erste Schritt zur Planetenentstehung) als auch die des Gases, da nur bestimmte Moleküle ein Ausfrieren vermeiden können und daher in der Gasphase angereichert werden. Gleichzeitig bedeutet dies aber auch, dass große Mengen von Wasser und Eis mitsamt den organischen Molekülen konserviert werden und in späteren Phasen während der Bildung der Planetensysteme zur Verfügung stehen.

"Wenn wir all dieses Know-How von der Theorie, aus dem Labor und von Beobachtungen zusammenbringen und uns auf bestimmte Phasen der Sternentstehung konzentrieren, können wir die Lücken zwischen den verschiedenen Stufen schließen und die Entstehung von Sternen und Planeten sowie die Evolution der chemischen Komplexität im Laufe der Zeit nachverfolgen", ist Caselli zuversichtlich. Wenn schließlich auch Astrobiologen mit an Bord kommen, könnte dies sogar dazu beitragen, die menschliche Suche nach dem Ursprung des Lebens einen großen Schritt voranzutreiben.

Forum
Wie organische Moleküle im All entstehen. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Herschel: Wasserreservoir in der Wiege eines Sterns - 9. Oktober 2012
Herschel: Organische Moleküle im Orion-Nebel - 5. März 2010
Links im WWW
Max-Planck-Institut für extraterrestrische Physik (MPE)
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://astronews.com/news/artikel/2014/04