Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel  [Druckansicht]


PHYSIK
Was wiegt ein Neutrino?
Redaktion / idw / Universität Münster
astronews.com
12. Juli 2005

Milliarden von Neutrinos durchdringen in jeder Sekunde die Erde, doch welche Masse diese Teilchen haben, ist bislang nicht bekannt. Das Weltbild der Physik kommt ohne diese Elementarteilchen allerdings nicht aus. Kein Wunder, dass man mit viel Energie daran arbeitet, die Neutrinomasse zu bestimmen. Unter anderem auch an deutschen Universitäten.

Sonne
 
Neutrinoquelle Sonne: Pro Quadratzentimeter mehr als 65 Milliarden Neutrinos jede Sekunde.  Bild: NSSDC/NASA

Sie sind nicht zu sehen, sie sind nicht zu messen, doch blieben sie reine Theorie, das Weltbild der Physiker würde zusammenbrechen. Neutrinos, so vermuten sie, sind eine Milliarde mal häufiger als alle anderen Teilchen im Universum, doch ihre Masse ist unbekannt. Um diese herauszufinden, beteiligt sich Prof. Dr. Christian Weinheimer vom Institut für Kernphysik der Universität Münster an dem Experiment "Katrin", dem "Karlsruher Tritium Neutrinoexperiment", das von rund 100 Wissenschaftlern aus fünf Ländern am Forschungszentrum Karlsruhe aufgebaut wird.

Er ist mit seinem Team verantwortlich für Teile der Technologie und der Kalibrierung des 36 Millionen teuren Experiments, das von ihm und Prof. Dr. Guido Drexlin vom Institut für Experimentelle Kernphysik der Universität Karlsruhe geleitet wird.

Insgesamt existieren zwölf fundamentale Elementarteilchen, von denen neun sehr gut bekannt und beschrieben sind. Dazu gehören beispielsweise die Elektronen, die die Atomhüllen bilden und Quarks, aus denen der Atomkern besteht. Auch Neutrinos gehören zu den fundamentalen Bausteinen der Natur. Nachgewiesen wurden sie erstmals 1957 beim radioaktiven Beta-Zerfall, in der Fusion der Sonne. Größtenteils kosmischen Ursprungs, wird ihnen eine grundlegende Rolle bei der Entstehung des Universums zugeschrieben.

Anzeige

"Lange Zeit ist man davon ausgegangen, dass Neutrinos keine Masse haben", sagt Weinheimer. "Inzwischen konnte man nachweisen, dass sie sehr wohl ein Gewicht haben." Da Neutrinos so häufig sind, ist ihre Masse von entscheidender Bedeutung, um zu verstehen, wie das Universum entstanden ist und was es zusammenhält. "Zwei Drittel des Universums bestehen aus so genannter Dunkler Energie, rund ein Drittel aus der so genannten Dunklen Materie, zu denen auch die Neutrinos gehören. Diese Begriffe liefern im Grunde die Erklärung für bestimmte Phänomene, doch verstanden haben wir sie deswegen noch lange nicht", so Weinheimer.

Direkt wiegen lassen sich die Neutrinos, die praktisch alles im All ohne Energieverlust durchdringen, nicht. Bei den bisherigen Experimenten konnte man durch die Umwandlung von Neutrinos zwar Unterschiede in der Masse feststellen, aber nicht das absolute Gewicht. Mit "Katrin" soll sich das ändern. Kernstück des Experiments ist das "beste Elektronenspektrometer" der Welt, das derzeit in Karlsruhe gebaut und vom Bundesforschungsministerium finanziert wird.

Mit einem Durchmesser von zehn Metern und einer Gesamtlänge von 23 Metern wird es auch zu den größten der Welt gehören. "Von der Sonne kommen auf der Erde pro Quadratzentimeter mehr als 65 Milliarden Neutrinos in der Sekunde an, trotzdem sind sie nicht zu spüren. Sie durchdringen die Materie und damit auch die Detektoren", erklärt Weinheimer die Probleme.

Um sie trotzdem nachzuweisen, nutzen die Physiker das Gesetz der Energieerhaltung: Zerfällt das Wasserstoffisotop Tritium in Elektronen und Neutrinos, lässt sich die Zerfallsenergie des Elektrons messen. Da man diese gut kennt, lässt sich durch die Differenz auch die Energie des Neutrinos und damit dessen Masse bestimmen. Das gasförmige Tritium hat eine Halbwertzeit von zwölf Jahren. Die Elektronen, die beim Zerfall entstehen, haben eine Energie von maximal 18600 Elektronenvolt.

Supraleitende Magneten fokussieren die Elektronen im größten je gebauten Ultrahochvakuumtank und leiten sie zu dem Elektronenspektrometer. "Magnete benutzen wir, weil die Elektronen sofort an Energie verlieren würden, wenn sie auf Materie träfen und dadurch das Ergebnis verfälscht würde", so Weinheimer. Am Ende fliegen die Elektronen durch eine Gegenspannung. Für jene Elektronen, die sie überwinden, kann nun die Zerfallsenergie und im Umkehrschluss auch die der Neutrinos bestimmt werden.

Dabei ist extreme Präzision notwendig. Sie zu erreichen, gehört zu den Grundproblemen des Experiments. "Münster ist dafür verantwortlich, dass das elektronenmagnetische Design der ganzen Apparatur mit über 30 supraleitenden Magneten und den zwei Spektrometern stimmt", so Weinheimer. Noch schwieriger ist es, die immer gleiche Spannung zu halten. Zur Eichung vermessen die münsterschen Wissenschaftler Elektronen, deren Spannung immer auf dem gleichen Level bleibt.

Kein Voltmesser auf der Welt kann 18.600 Volt messen, deshalb wird am Institut ein Präzisionsspannungsteiler entwickelt. Die Gefahr, dass der Elektronenstrom aus dem Tritiumzerfall durch andere Elektronen verunreinigt wird, ist sehr hoch. Deshalb entwirft Weinheimer mit seiner Gruppe feine Drahtgitter, die das verhindern sollen. "Wegen der Hochspannung und des Vakuums ist das allerdings keine triviale Aufgabe", so der Physiker.

Noch wird "Katrin" gebaut, die ersten Messungen sind erst 2008 zu erwarten. Bis die notwendige Menge an Daten gesammelt ist, werden weitere Jahre vergehen. Was ein Neutrino wiegt, wird also vermutlich noch einige Zeit im Dunklen bleiben.

Forum
Geheimnisvolle Neutrinos. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Neutrinos: KATRIN soll Neutrinomasse bestimmen - 6. Juli 2001
Neutrinos: Preis für obere Massengrenze - 23. Mai 2001
Links im WWW
Universität Münster
Forschungszentrum Karlsruhe GmbH
In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2005/07